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Introduction

The three basic problems we will address in this book are as follows. In all cases we are given
as data a matrix A ∈ Cm×n, with m ≥ n and, for the �rst two problems, the vector b ∈ Cm.
(SLE) denotes simultaneous linear equations, (LSQ) denotes least squares and (EVP) denotes
eigenvalue problem.

(SLE) (m = n)
�nd x ∈ Cn:

Ax = b

(LSQ) (m ≥ n)
�nd x ∈ Cn:

min
x∈Cn

‖Ax− b‖22

(EVP) (m = n)
�nd (x, λ) ∈ Cn × C:

Ax = λx, ‖x‖22 = 1

The book contains an introduction to matrix analysis, and to the basic algorithms of numer-
ical linear algebra. Further results can be found in many text books. The book of Horn and
Johnson [HJ85] is an excellent reference for theoretical results about matrix analysis; see also
[Bha97]. The subject of linear algebra, and matrix analysis in particular, is treated in an original
and illuminating fashion in [Lax97]. For a general introduction to the subject of numerical linear
algebra we recommend the book by Trefethen and Bau [TB97]; more theoretical treatments of
the subject can be found in Demmel [Dem97], Golub and Van Loan [GL96] and in Stoer and
Bulirsch [SB02]. Higham's book [Hig02] contains a wealth of information about stability and
the e�ect of rounding errors in numerical algorithms; it is this source that we used for almost
all theorems we state concerning backward error analysis. The book of Saad [Saa97] covers the
subject of iterative methods for linear systems. The symmetric eigenvalue problem is analysed
in Parlett [Par80].
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Chapter 1

Vector and Matrix Analysis

The purpose of this chapter is to summarise the fundamental theoretical results from linear
algebra to which we will frequently refer, and to provide some basic theoretical tools which we will
use in our analysis. We study vector and matrix norms, inner-products, the eigenvalue problem,
orthogonal projections and a variety of special matrices which arise frequently in computational
linear algebra.

1.1 Vector Norms and Inner Products

De�nition 1.1. A vector norm on Cn is a mapping ‖ · ‖ : Cn → R satisfying

a) ‖x‖ ≥ 0 for all x ∈ Cn and ‖x‖ = 0 i� x = 0,

b) ‖αx‖ = |α|‖x‖ for all α ∈ C, x ∈ Cn, and

c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Cn.

Remark. The de�nition of a norm on Rn is identical, but with Cn replaced by Rn and C
replaced by R.

Examples.

• the p-norm for 1 ≤ p <∞:

‖x‖p =
( n∑
j=1

|xj |p
)1/p

∀x ∈ Cn;

• for p = 2 we get the Euclidean norm:

‖x‖2 =

√√√√ n∑
j=1

|xj |2 ∀x ∈ Cn;

• for p = 1 we get

‖x‖1 =
n∑
j=1

|xj | ∀x ∈ Cn;

• In�nity norm: ‖x‖∞ = max1≤j≤n |xj |.

Theorem 1.2. All norms on Cn are equivalent: for each pair of norms ‖ · ‖a and ‖ · ‖b on Cn
there are constants 0 < c1 ≤ c2 <∞ with

c1‖x‖a ≤ ‖x‖b ≤ c2‖x‖a ∀x ∈ Cn.
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Proof. Using property b) from the de�ntion of a vector norm it su�ces to consider vectors
x ∈ S =

{
x ∈ Cn

∣∣ ‖x‖2 = 1
}
. Since ‖ · ‖a is non-zero on all of S we can de�ne f : S → R

by f(x) = ‖x‖b/‖x‖a. Because the function f is continuous and the set S is compact there are
x1, x2 ∈ S with f(x1) ≤ f(x) ≤ f(x2) for all x ∈ S. Setting c1 = f(x1) > 0 and c2 = f(x2)
completes the proof.

Remarks.

1. The same result holds for norms on Rn. The proof transfers to this situation without
change.

2. We remark that, if A ∈ Cn×n is an invertible matrix and ‖ · ‖ a norm on Cn then ‖ · ‖A :=
‖A · ‖ is also a norm.

De�nition 1.3. An inner-product on Cn is a mapping 〈 · , · 〉 : Cn × Cn → C satisfying:

a) 〈x, x〉 ∈ R+ for all x ∈ Cn and 〈x, x〉 = 0 i� x = 0;

b) 〈x, y〉 = 〈y, x〉 for all x, y ∈ Cn;

c) 〈x, αy〉 = α〈x, y〉 for all α ∈ C, x, y ∈ Cn;

d) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 for all x, y, z ∈ Cn;

Remark. Conditions c) and d) above state that 〈 · , · 〉 is linear in the second component. Using
the rules for inner products we get

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 for all x, y, z ∈ Cn

and
〈αx, y〉 = α〈x, y〉 for all α ∈ C, x, y ∈ Cn.

The inner product is said to be anti-linear in the �rst component.

Example. The standard inner product on Cn is given by

〈x, y〉 =
n∑
j=1

xjyj ∀x, y ∈ Cn. (1.1)

De�nition 1.4. Two vectors x, y are orthogonal with respect to an inner product 〈 · , · 〉 i�
〈x, y〉 = 0.

Lemma 1.5 (Cauchy-Schwarz inequality). Let 〈 · , · 〉 : Cn×Cn → C be an inner product. Then∣∣〈x, y〉∣∣2 ≤ 〈x, x〉 · 〈y, y〉 (1.2)

for every x, y ∈ Cn and equality holds if and only if x and y are linearly dependent.

Proof. For every λ ∈ C we have

0 ≤ 〈x− λy, x− λy〉 = 〈x, x〉 − λ〈y, x〉 − λ〈x, y〉+ λλ〈y, y〉. (1.3)

For λ = 〈y, x〉/〈y, y〉 this becomes

0 ≤ 〈x, x〉 − 〈x, y〉〈y, x〉
〈y, y〉

− 〈y, x〉〈x, y〉
〈y, y〉

+
〈y, x〉〈x, y〉
〈y, y〉

= 〈x, x〉 −
∣∣〈x, y〉∣∣2
〈y, y〉

and multiplying the result by 〈y, y〉 gives (1.2).
If equality holds in (1.2) then x−λy in (1.3) must be 0 and thus x and y are linearly dependent.

If on the other hand x and y are linearly dependent, say x = αy, then λ = 〈y, αy〉/〈y, y〉 = α
and x− λy = 0 giving equality in (1.3) and thus in (1.2).

5



Lemma 1.6. Let 〈 · , · 〉 : Cn × Cn → C be an inner product. Then ‖ · ‖ : Cn → R de�ned by

‖x‖ =
√
〈x, x〉 ∀x ∈ Cn

is a vector norm.

Proof. a) Since 〈 · , · 〉 is an inner product we have 〈x, x〉 ≥ 0 for all x ∈ Cn, i.e.
√
〈x, x〉 is real

and positive. Also we get

‖x‖ = 0 ⇐⇒ 〈x, x〉 = 0 ⇐⇒ x = 0.

b) We have

‖αx‖ =
√
〈αx, αx〉 =

√
αα〈x, x〉 = |α| · ‖x‖.

c) Using the Cauchy-Schwarz inequality∣∣〈x, y〉∣∣ ≤ ‖x‖‖y‖ ∀x, y ∈ Cn

from Lemma 1.5 we get

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
≤ ‖x‖2 + 2

∣∣〈x, y〉∣∣+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

=
(
‖x‖+ ‖y‖

)2 ∀x, y ∈ Cn.

This completes the proof.

Remark. The angle between two vectors x and y is the unique value ϕ ∈ [0, π] with

cos(ϕ)‖x‖‖y‖ = 〈x, y〉.

When considering the Euclidean norm and inner product on Rn, this de�nition of angle coincides
with the usual, geometric meaning of angles. In any case, two vectors are orthogonal, if and only
if they have angle π/2.

We write matrices A ∈ Cm×n as

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn

 ;

we write (A)ij = aij for the ij
th entry of A.

De�nition 1.7. Given A ∈ Cm×n we de�ne the adjoint A∗ ∈ Cn×m by
(
A∗
)
ij

= aji. (For

A ∈ Rm×n we write AT instead of A∗.)

By identifying the space Cn of vectors with the space Cn×1 of n × 1-matrices, we can take
the adjoint of a vector. Then we can write the standard inner product as

〈x, y〉 = x∗y.

Thus, the standard inner product satis�es

〈Ax, y〉 = (Ax)∗y = x∗A∗y = 〈x,A∗y〉

for all x ∈ Cn, y ∈ Cm and all A ∈ Cm×n. Unless otherwise speci�ed, we will use 〈 · , · 〉 to
denote the standard inner product (1.1) and ‖ · ‖2 to denote the corresponding Euclidean norm.
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The following families of special matrices will be central in what follows:

De�nition 1.8. 1. Q ∈ Cm×n is unitary if Q∗Q = I. (If Q is real then QTQ = I and we say
Q is orthogonal.)

2. A ∈ Cn×n is Hermitian if A∗ = A. (If A is real, we say A is symmetric.)

3. A Hermitian matrix A ∈ Cn×n is positive-de�nite (resp. positive semi-de�nite) if x∗Ax =
〈Ax, x〉 > 0 (resp. ≥ 0) for all x ∈ Cn \ {0}. In this text, whenever we use the terminology
positive-de�nite or positive semi-de�nite we are necessarily refering to Hermitian matrices.

Remarks. Unitary matrices have the following properties:

• A matrix Q is unitary, if and only if the columns of Q are orthonormal with respect to the
standard inner-product. In particular unitary matrices cannot have more columns than
rows.

• If Q is a square matrix, Q−1 = Q∗ and thus QQ∗ = I.

• A square matrix Q is unitary, if and only if Q∗ is unitary.

The standard inner product and norm are invariant under multiplication by a unitary matrix:

Theorem 1.9. Let 〈 · , · 〉 denote the standard inner product. Then for any unitary Q ∈ Cm×n
and any x, y ∈ Cn we have 〈Qx,Qy〉 = 〈x, y〉 and ‖Qx‖2 = ‖x‖2.

Proof. The �rst claim follows from 〈Qx,Qy〉 = 〈x,Q∗Qy〉 = 〈x, y〉 and using the relation ‖x‖2 =
〈x, x〉 gives the second claim.

Other inner products with appropriate properties can give rise to other norms; for example,
for matrices A which are Hermitian and positive-de�nite,

〈x, y〉A = 〈x,Ay〉 (1.4)

is an inner product and
‖x‖A =

√
〈x, x〉A. (1.5)

de�nes a norm (see Exercise 1-2).

1.2 Eigenvalues and Eigenvectors

De�nition 1.10. Given a matrix A ∈ Cn×n, a vector x ∈ Cn is an eigenvector and λ ∈ C is an
eigenvalue (also called a right eigenvalue) of A if

Ax = λx and x 6= 0. (1.6)

When x is an eigenvector of A, then for every α 6= 0 the vector αx is an eigenvector for the
same eigenvalue, since both sides of (1.6) are linear in x. Sometimes it is convenient to normalise
x by choosing ‖x‖2 = 1. Then the eigenvalue problem is to �nd (x, λ) ∈ Cn × C satisfying

Ax = λx and ‖x‖2 = 1.

De�nition 1.11. Given a matrix A ∈ Cn×n we de�ne the characteristic polynomial of A as

ρA(z) := det(A− zI).

Theorem 1.12. A value λ ∈ C is an eigenvalue of the matrix A, if and only if ρA(λ) = 0.

Proof. λ is an eigenvalue of A, if and only if there is an x 6= 0 with (A − λI)x = 0. This is
equivalent to the condition that A− λI is singular which in turn is equivalent to det(A− λI) =
0.
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Since ρA is a polynomial of degree n, there will be n (some possibly repeated) eigenvalues,
denoted by λ1, . . . , λn and determined by ρA(λk) = 0.

De�nition 1.13. An eigenvalue λ has algebraic multiplicity q if q is the largest integer such
that (z − λ)q is a factor of the characteristic polynomial ρA(z). The geometric multiplicity, r, is
the dimension of the null space of A− λI. An eigenvalue is simple if q = r = 1.

If λ is an eigenvalue of A ∈ Cn×n then det(A− λI) = 0 which implies that det(A∗ − λ̄I) = 0
and so (A∗ − λ̄I) has non-trivial null space. Thus there is a vector y (the eigenvector of A∗

corresponding to the eigenvalue λ̄) with y∗A = λy∗ and y 6= 0.

De�nition 1.14. A vector y ∈ Cn with

y∗A = λy∗ and y 6= 0

is known as a left eigenvector of A ∈ Cn×n corresponding to the eigenvalue λ.

Note that, even though the corresponding eigenvalues are the same, the right and left eigen-
vectors of a matrix are usually di�erent.

De�nition 1.15. Matrices A,B ∈ Cn×n are similar, if B = S−1AS with S ∈ Cn×n invertible.
The matrix S is a similarity transform.

Remarks. If a matrix A ∈ Cn×n has n linearly independent eigenvectors xi and we arrange
them as columns of the matrix X, then X is invertible. If we let Λ denote a diagonal matrix
with eigenvalues of A on the diagonal, then we may write

AX = XΛ.

By invertibility of X we have
A = XΛX−1. (1.7)

Thus Λ is a similarity transform of A. It reveals the eigenstructure of A and is hence very
useful in many situations. However, in general a matrix does not have n linearly independent
eigenvalues and hence generalizations of this factorization are important. Two which will arise
in the next chapter are:

• Jordan Canonical Form: A = SJS−1 (see Theorem 2.7)

• Schur Factorization: A = QTQ∗ (see Theorem 2.2)

These are both similarity transformations which reveal the eigenvalues of A on the diagonals
of J and T , respectively. The Jordan Canonical Form is not stable to perturbations, but the
Schur Factorization is. Hence Schur Factorization will form the basis of good algorithms while
the Jordan Canonical Form is useful for more theoretical purposes, such as de�ning the matrix
exponential eAt.

Theorem 1.16 (Similarity and Eigenvalues). If B is similar to A, then B and A have the same
eigenvalues with the same algebraic and geometric multiplicities.

Proof. Exercise 2-4.

Lemma 1.17. For a simple eigenvalue µ,

dim
(
ker(A− µI)2

)
= 1.

Proof. (Sketch) We prove this in the case where A has n linearly independent eigenvalues
xi all of which correspond to simple eigenvalues λi. Then A may be factorized as in (1.7) with
Λ = diag{λ1, λ2, . . . , λn}. Hence

(A− µI)2 = XΩX−1,
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where Ω = diag{(λ1 − µ)2, (λ2 − µ)2, . . . , (λn − µ)2}.
Without loss of generality let µ = λ1, noting that λj 6= µ by simplicity. ker(Ω) is one

dimensional, spanned by e1. Hence ker(A− µI)2 is one dimensional by Theorem 1.16
The general case can be established by use of the Jordan form (see Theorem 2.7), using the

fact that the Jordan block corresponding to a simple eigenvalue is diagonal.

Theorem 1.18 (Eigenvalue Multiplicities). For any eigenvalue of A ∈ Rn×n the algebraic and
geometric multiplicities q and r respectively satisfy

1 ≤ r ≤ q.

Proof. Let µ be the eigenvalue. Since (A− µI) is non-invertible, its null-space U has dimension
r ≥ 1. Let V̂ ∈ Cn×r have r columns comprising an orthonormal basis for U ; then extend V̂ to
V ∈ Cn×n by adding orthonormal columns so that V is unitary. Now

B = V ∗AV =
(
µI C
0 D

)
,

where I is the r× r identity, C is r× (n− r) and D is (n− r)× (n− r), and B and A are similar.
Then

det(B − zI) = det(µI − zI) det(D − zI)
= (µ− z)r det(D − zI).

Thus B has algebraic multiplicity ≥ r for B and hence A has algebraic multiplicity ≥ r, by
Theorem 1.16.

De�nition 1.19. The spectral radius of a matrix A ∈ Cn×n is de�ned by

ρ(A) = max
{
|λ|
∣∣ λ is eigenvalue of A

}
.

By considering the eigenvectors of a matrix, we can de�ne an important class of matrices

De�nition 1.20. A matrix A ∈ Cn×n is normal i� it has n orthogonal eigenvectors.

The importance of this concept lies in the fact, that normal matrices can always be diago-
nalised: if Q ∈ Cn×n is a matrix where the columns form an orthonormal system of eigenvectors
and Λ ∈ Cn×n is the diagonal matrix with the corresponding eigenvalues on the diagonal, then
we have

A = QΛQ∗.

Using this relation, we see that every normal matrix satis�es A∗A = QΛ∗ΛQ∗ = QΛΛ∗Q∗ =
AA∗. In Theorem 2.3 we will see that the condition A∗A = AA∗ is actually equivalent to A
being normal in the sense of the de�nition above. Sometimes this alternative condition is used
to de�ne when a matrix is normal. As a consequence of this equivalence, every Hermitian matrix
is also normal.

Let now A be Hermitian and positive de�nite. Then Ax = λx implies

λ〈x, x〉 = 〈x, λx〉 = 〈x,Ax〉 = 〈Ax, x〉 = 〈λx, x〉 = λ̄〈x, x〉.

Thus, all eigenvalues of A are real and we can arrange them in increasing order λmin = λ1 ≤
· · · ≤ λn = λmax. The following lemma uses λmin and λmax to estimate the values of the norm
‖ · ‖A from (1.5) by ‖ · ‖.

Lemma 1.21. Let λmin and λmax be the smallest and largest eigenvalues of a Hermitian, positive
de�nite matrix A ∈ Cn×n. Then

λmin‖x‖2 ≤ ‖x‖2A ≤ λmax‖x‖2 ∀x ∈ Cn.
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Proof. Let ϕ1, . . . , ϕn be an orthonormal system of eigenvectors of A with corresponding eigen-
values λmin = λ1 ≤ · · · ≤ λn = λmax. By writing x as x =

∑n
i=1 ξiϕi we get

‖x‖2 =
n∑
i=1

|ξi|2

and

‖x‖2A =
n∑
i=1

λiξ
2
i .

This gives the upper bound

‖x‖2A ≤
n∑
i=1

λmaxξ
2
i ≤ λmax‖x‖2

and similarly we get the lower bound.

1.3 Dual Spaces

Let 〈 · , · 〉 denote the standard inner-product.

De�nition 1.22. Given a norm ‖ · ‖ on Cn, the pair (Cn, ‖ · ‖) is a Banach space B. The Banach
space B′, the dual of B, is the pair (Cn, ‖ · ‖B′), where

‖x‖B′ = max
‖y‖=1

|〈x, y〉|.

See Exercise 1-5 to deduce that the preceeding de�nition satis�es the norm axioms.

Theorem 1.23. The spaces (Cn, ‖ · ‖1) and (Cn, ‖ · ‖∞) are the duals of one another.

Proof. Firstly, we must show
‖x‖1 = max

‖y‖∞=1
|〈x, y〉|.

This is clearly true for x = 0 and so we consider only x 6= 0. Now

|〈x, y〉| ≤ max
i
|yi|

n∑
j=1

|xj | = ‖y‖∞‖x‖1,

and therefore
max
‖y‖∞=1

|〈x, y〉| ≤ ‖x‖1.

We need to show that this upper-bound is achieved. If yj = xj/|xj | (with the convention that
this is 0 when xj is 0) then ‖y‖∞ = 1 (since x 6= 0) and

〈x, y〉 =
n∑
j=1

|xj |2/|xj | =
n∑
j=1

|xj | = ‖x‖1.

Hence max‖y‖∞=1 |〈x, y〉| = ‖x‖1.
Secondly, it remains to show that

‖x‖∞ = max
‖y‖1=1

|〈x, y〉|.

We have

|〈x, y〉| ≤ ‖y‖1‖x‖∞
⇒ max

‖y‖1=1
|〈x, y〉| ≤ ‖x‖∞.

If x = 0 we have equality; if not then, for some k such that |xk| = ‖x‖∞ > 0, choose yj =
δjkxk/|xk|. Then

〈x, y〉 = |xk| = ‖x‖∞ and ‖y‖1 = 1.

Thus max‖y‖1=1 |〈x, y〉| = ‖x‖∞.
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Theorem 1.24. If p, q ∈ (1,∞) with p−1 + q−1 = 1 then the Banach spaces (Cn, ‖ · ‖p) and
(Cn, ‖ · ‖q) are the duals of one another.

Proof. See Exercise 1-6.

1.4 Matrix Norms

Since we can consider the space Cm×n of allm×n-matrices to be a copy of them×n-dimensional
vector space Cmn, we can use all vector norms on Cmn as vector norms on the matrices Cm×n.
Examples of vector norms on the space of matrices include

• maximum norm: ‖A‖max = maxi,j |aij |

• Frobenius norm: ‖A‖F =
(∑m,n

i,j=1 |aij |2
) 1

2

• operator norm Cn → Cm: if A ∈ Cm×n,

‖A‖(m̂,n̂) = max
‖x‖n̂=1

‖Ax‖m̂

where ‖ · ‖m̂ is a norm on Cm, and ‖ · ‖n̂ is a norm on Cn. Note that, for any operator
norm,

‖A‖(m̂,n̂) = max
‖x‖n̂≤1

‖Ax‖m̂ = max
‖x‖n̂=1

‖Ax‖m̂ = max
x∈Cn\{0}

‖Ax‖m̂
‖x‖n̂

.

Sometimes it is helpful to consider special vector norms on a space of matrices, which are
compatible with the matrix-matrix multiplication.

De�nition 1.25. A matrix norm on Cn×n is a mapping ‖ · ‖ : Cn×n → R with

a) ‖A‖ ≥ 0 for all A ∈ Cn×n and ‖A‖ = 0 i� A = 0,

b) ‖αA‖ = |α|‖A‖ for all α ∈ C, A ∈ Cn×n,

c) ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ Cn×n.

d) ‖AB‖ ≤ ‖A‖‖B‖ for all A,B ∈ Cn×n.

Remark. Conditions a), b) and c) state that ‖ · ‖ is a vector norm on the vector space Cn×n.
Condition d) only makes sense for matrices, since general vectors spaces are not equipped with
a product.

Examples of matrix norms include

• p-operator norm Cn → Cn: if A ∈ Cn×n,

‖A‖p = max
‖x‖p=1

‖Ax‖p, 1 ≤ p ≤ ∞

The vector operator norm from Cn into Cm reduces to the p-operator norm if n = m and
the p-norm is chosen in the range and image spaces.

De�nition 1.26. Given a vector norm ‖ · ‖v on Cn we de�ne the induced norm ‖ · ‖m on Cn×n
by

‖A‖m = max
x 6=0

‖Ax‖v
‖x‖v

for all A ∈ Cn×n.

We now show that the induced norm is indeed a norm.

11



Theorem 1.27. The induced norm ‖ · ‖m of a vector norm ‖ · ‖v is a matrix norm with

‖I‖m = 1

and
‖Ax‖v ≤ ‖A‖m‖x‖v

for all A ∈ Cn×n and x ∈ Cn.

Proof. a) ‖A‖m ∈ R and ‖A‖m ≥ 0 for all A ∈ Cn×n is obvious from the de�nition. Also from
the de�nition we get

‖A‖m = 0 ⇐⇒ ‖Ax‖v
‖x‖v

= 0 ∀x 6= 0

⇐⇒ ‖Ax‖v = 0 ∀x 6= 0 ⇐⇒ Ax = 0 ∀x 6= 0 ⇐⇒ A = 0.

b) For α ∈ C and A ∈ Cn×n we get

‖αA‖m = max
x 6=0

‖αAx‖v
‖x‖v

= max
x 6=0

|α|‖Ax‖v
‖x‖v

= |α|‖A‖m

c) For A,B ∈ Cn×n we get

‖A+B‖m = max
x 6=0

‖Ax+Bx‖v
‖x‖v

≤ max
x 6=0

‖Ax‖v + ‖Bx‖v
‖x‖v

≤ max
x 6=0

‖Ax‖v
‖x‖v

+ max
x 6=0

‖Bx‖v
‖x‖v

= ‖A‖m + ‖B‖m.

Before we check condition d) from the de�nition of a matrix norm we verify

‖I‖m = max
x 6=0

‖Ix‖v
‖x‖v

= max
x 6=0

‖x‖v
‖x‖v

= 1

and

‖A‖m = max
y 6=0

‖Ay‖v
‖y‖v

≥ ‖Ax‖v
‖x‖v

∀x ∈ Cn \ {0}

which gives
‖Ax‖v ≤ ‖A‖m‖x‖v ∀x ∈ Cn.

d) Using this estimate we �nd

‖AB‖m = max
x 6=0

‖ABx‖v
‖x‖v

≤ max
x 6=0

‖A‖m‖Bx‖v
‖x‖v

= ‖A‖m‖B‖m.

Remarks.

1. Usually one denotes the induced matrix norm with the same symbol as the corresponding
vector norm. For the remainder of this text we will follow this convention.

2. As a consequence of theorem 1.27 we can see that not every matrix norm is an induced
norm: If ‖ · ‖m is a matrix norm, then it is easy to check that ‖ · ‖′m = 2‖ · ‖m is a matrix
norm, too. But at most one of these two norms can equal 1 for the identity matrix, and
thus the other one cannot be an induced matrix norm.

12



3. Recall that ‖ · ‖A := ‖A · ‖ is a vector norm on Cn whenever ‖ · ‖ is, provided that A is
invertible. The inequality from Theorem 1.27 gives the following upper and lower bounds
for the norm ‖ · ‖ in terms of the original norm:

1
‖A−1‖

‖x‖ ≤ ‖x‖A ≤ ‖A‖‖x‖.

Theorem 1.28. The matrix norm induced by the in�nity norm is the maximum row sum:

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |.

Proof. For x ∈ Cn we get

‖Ax‖∞ = max
1≤i≤n

|(Ax)i| = max
1≤i≤n

|
n∑
j=1

aijxj | ≤ max
1≤i≤n

n∑
j=1

|aij |‖x‖∞

which gives

‖Ax‖∞
‖x‖∞

≤ max
1≤i≤n

n∑
j=1

|aij |

for all x ∈ Cn and thus ‖A‖∞ ≤ max1≤i≤n
∑n
j=1 |aij |.

For the lower bound choose k ∈ {1, 2, . . . , n} such that

max
1≤i≤n

n∑
j=1

|aij | =
n∑
j=1

|akj |

and de�ne x ∈ Cn by xj = akj/|akj | for all j = 1, . . . , n (with the convention that this is 0 when
akj is 0). Then we have ‖x‖∞ = 1 and

‖A‖∞ ≥
‖Ax‖∞
‖x‖∞

= max
1≤i≤n

|
n∑
j=1

aij
akj
|akj |

|

≥ |
n∑
j=1

akj
akj
|akj |

|

=
n∑
j=1

|akj |

= max
1≤i≤n

n∑
j=1

|aij |.

This is the required result.

Theorem 1.29. Let A ∈ Cn×n. Then ‖A∗‖1 = ‖A‖∞ and so

‖A‖1 = ‖A∗‖∞ = max
1≤j≤n

n∑
i=1

|aij |.

This expression is known as the maximum column sum.
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Proof. (Sketch)

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞

= max
‖x‖∞=1

(
max
‖y‖1=1

|〈Ax, y〉|
)

(Dual de�nition)

= max
‖y‖1=1

(
max
‖x‖∞=1

|〈Ax, y〉|
)

(needs careful justi�cation)

= max
‖y‖1=1

(
max
‖x‖∞=1

|〈x,A∗y〉|
)

(de�nition of A∗)

= max
‖y‖1=1

‖A∗y‖1 (Dual de�nition)

= ‖A∗‖1.

Since (A∗)ij = aji, the result follows.

Remark. This result is readily extended to non-square matrices A ∈ Cm×n.

Recall that the spectral radius of a matrix is de�ned as

ρ(A) = max
{
|λ|
∣∣ λ is eigenvalue of A

}
.

Theorem 1.30. For any matrix norm ‖ · ‖, any matrix A ∈ Cn×n and any k ∈ N we have

ρ(A)k ≤ ρ(Ak) ≤ ‖Ak‖ ≤ ‖A‖k.

Proof. Let B = Ak. The �rst inequality is a consequence of the fact that, whenever x is an
eigenvector of A with eigenvalue λ, the vector x is also an eigenvector of B, but with eigenvalue
λk. By de�nition of the spectral radius ρ(B) we can �nd an eigenvector x with Bx = λx and
ρ(B) = |λ|. Let X ∈ Cn×n be the matrix where all n columns are equal to x. Then we have
BX = λX and thus

‖B‖‖X‖ ≥ ‖BX‖ = ‖λX‖ = |λ|‖X‖ = ρ(B)‖X‖.

Dividing by ‖X‖ gives ρ(B) ≤ ‖B‖. The �nal inequality follows from property d) in the de�nition
of a matrix norm.

Theorem 1.31. If A ∈ Cn×n is normal, then

ρ(A)` = ‖A`‖2 = ‖A‖`2 ∀` ∈ N.

Proof. Let x1, . . . , xn be an orthonormal basis composed of eigenvectors of A with corresponding
eigenvalues λ1, . . . , λn. Without loss of generality we have ρ(A) = |λ1|.

Let x ∈ Cn. Then we can write

x =
n∑
j=1

αjxj

and get

‖x‖22 =
n∑
j=1

|αj |2.

Similarly we �nd

Ax =
n∑
j=1

αjλjxj and ‖Ax‖22 =
n∑
j=1

|αjλj |2.
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This shows

‖Ax‖2
‖x‖2

=

(∑n
j=1 |αjλj |2

)1/2(∑n
j=1 |αj |2

)1/2
≤
(∑n

j=1 |αj |2|λ1|2∑n
j=1 |αj |2

)1/2

= |λ1| = ρ(A) ∀x ∈ Cn

and consequently ‖A‖2 ≤ ρ(A).
Using Theorem 1.30 we get

ρ(A)` ≤ ‖A`‖2 ≤ ‖A‖`2 ≤ ρ(A)`

for all ` ∈ N. This completes the proof.

Similar methods to those used in the proof of the previous result yield the following theorem.

Theorem 1.32. For all matrices A ∈ Cm×n

‖A‖22 = ρ(A∗A).

Proof. See Exercise 1-9.

The matrix 2-norm has the special property that it is invariant under multplication by a
unitary matrix. This is the analog of Theorem 1.9 for vector norms.

Theorem 1.33. For all matrices A ∈ Cm×n and unitary matrices U ∈ Cm×m, V ∈ Cn×n

‖UA‖2 = ‖A‖2, ‖AV ‖2 = ‖A‖2.

Proof. The �rst result follows from the previous theorem, after noting that (UA)∗(UA) =
A∗U∗UA = A∗A. Because (AV )∗(AV ) = V ∗(A∗A)V and because V ∗(A∗A)V is a similarity
transformation of A∗A the second result also follows from the previous theorem.

Let A,B ∈ Cm×n. In the following it will be useful to employ the notation |A| to denote the
matrix with entries (|A|)ij = |aij | and the notation |A| ≤ |B| as shorthand for |aij | ≤ |bij | for
all i, j.

Lemma 1.34. If two matrices A,B ∈ Cm×n satisfy |A| ≤ |B| then ‖A‖∞ ≤ ‖B‖∞ and ‖A‖1 ≤
‖B‖1. Furthermore ‖|AB|‖∞ ≤ ‖|A||B|‖∞.

Proof. For the �rst two observations, it su�ces to prove the �rst result since ‖A‖1 = ‖A∗‖∞ and
|A| ≤ |B| implies that |A∗| ≤ |B∗|. The �rst result is a direct consequence of the representation
of the ∞-norm and 1-norm from theorems 1.28 and 1.29. To prove the last result note that

(|AB|)ij = |
∑
k

AikBkj |

≤
∑
k

|Aik||Bkj |

= (|A||B|)ij .

The �rst result completes the proof.

Lemma 1.35. Let A,B ∈ Cn×n. Then

‖A‖max ≤ ‖A‖∞ ≤ n‖A‖max,

‖AB‖max ≤ ‖A‖∞‖B‖max,

‖AB‖max ≤ ‖A‖max‖B‖1.
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Proof. Exercise 1-8.

De�nition 1.36. The outer product of two vectors a, b ∈ Cn is the matrix a⊗ b ∈ Cn×n de�ned
by

(a⊗ b)c = (b∗c)a = 〈b, c〉a ∀c ∈ Cn.

We sometimes write a⊗ b = ab∗. The ijth entry of the outer product is (a⊗ b)ij = aib̄j .

De�nition 1.37. Let S be a subspace of Cn. Then the orthogonal complement of S is de�ned
by

S⊥ = {x ∈ Cn | 〈x, y〉 = 0 ∀y ∈ S}.

The orthogonal projection onto S, P , can be de�ned as follows: let {yi}ki=1 be an orthonormal
basis for S, then

Px =
k∑
j=1

〈yj , x〉yj =
( k∑
j=1

yjy
∗
j

)
x =

( k∑
j=1

yj ⊗ yj
)
x.

Theorem 1.38. P is a projection, that is P 2 = P . Furthermore, if P⊥ = I − P , then P⊥ is
the orthogonal projection onto S⊥.

Proof. Extend {yi}ki=1 to a basis for Cn, denoted {yi}ni=1, noting that S
⊥ = span {yk+1, . . . , yn}.

Any x ∈ Cn can be written uniquely as

x =
n∑
j=1

〈yj , x〉yj ,

and so

Px =
k∑
j=1

〈yj , x〉yj ,

found by truncating to k terms. Clearly truncating again leaves the expression unchanged:

P 2x =
k∑
j=1

〈yj , x〉yj = Px, ∀x ∈ Cn.

Now (I − P )x = P⊥x =
∑n
j=k+1〈yj , x〉yj , proving the second result.

1.5 Structured Matrices

De�nition 1.39. A matrix A ∈ Cn×n is

diagonal if aij = 0 i 6= j

(strictly) upper-triangular if aij = 0 i > j (≥ )
(strictly) lower-triangular if aij = 0 i < j (≤ )

upper Hessenberg if aij = 0 i > j + 1
upper bidiagonal if aij = 0 i > j& i < j − 1

tridiagonal if aij = 0 i > j + 1 & i < j − 1

De�nition 1.40. A matrix P ∈ Rn×n is called a permutation matrix if every row and every
column contains n− 1 zeros and 1 one.
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Remarks.

1. If P is a permutation matrix, then we have

(PTP )ij =
n∑
k=1

pkipkj = δij

and thus PTP = I. This shows that permutation matrices are orthogonal.

2. If π : {1, . . . , n} → {1, . . . , n} is a permutation, then the matrix P = (pij) with

pij =

{
1 if j = π(i) and
0 else

is a permutation matrix. Indeed every permutation matrix is of this form. In particular
the identity matrix is a permutation matrix.

3. If P is the permutation matrix corresponding to the permutation π, then (P−1)ij = 1 if and
only if j = π−1(i). Thus the permutation matrix P−1 corresponds to the permutation π−1.

4. We get

(PA)ij =
n∑
k=1

pikakj = aπ(i),j

for all i, j ∈ {1, . . . , n}. This shows that multiplying a permutation matrix from the left
reorders the rows of A. Furthermore we have

(AP )ij =
n∑
k=1

aikpkj = ai,π−1(j)

and hence multiplying a permutation matrix from the right reorders the columns of A.

5. If P is a permutation matrix, then PT is also a permutation matrix.
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treatment of the subject includes [Lax97]. Theorem 1.16 and Lemma 1.17 are proved in [Ner71].
The proof of Theorem 1.24 may be found in [Rob01]. Theorem 1.32 is proved in the solutions
for instructors.

Exercises

Exercise 1-1. Show that the following relations hold for all x ∈ Cn:
a) ‖x‖2 ≤ ‖x‖1 ≤

√
n‖x‖2,

b) ‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞ and

c) ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

Exercise 1-2. Prove that, for Hermitian positive de�nite A, equations (1.4) and (1.5) de�ne an
inner-product and norm, respectively.

Exercise 1-3. For matrices in Rm×n prove that

‖A‖max ≤ ‖A‖F ≤
√
mn‖A‖max.
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Exercise 1-4. De�ne an inner product 〈 · , · 〉 on matrices in Rn×n such that

‖A‖2F = 〈A,A〉.

Exercise 1-5. Prove that the norm ‖ · ‖B′ appearing in De�nition 1.22 is indeed a norm.

Exercise 1-6. Prove Theorem 1.24.

Exercise 1-7. Show that ‖A‖max = maxi,j |aij | for all A ∈ Cn×n de�nes a vector norm on the
space of n× n-matrices, but not a matrix norm.

Exercise 1-8. Prove Lemma 1.35.

Exercise 1-9. Show that ‖A‖22 = ρ(ATA) for every matrix A ∈ Rn×n (this is the real version
of Theorem 1.32).

Exercise 1-10. For A ∈ Rn×n recall the de�nition of |A|, namely (|A|)ij = |aij |. Show that

‖|A|‖ = ‖A‖

holds in the Frobenius, in�nity and 1-norms. Is the result true in the Euclidean norm? Justify
your assertion.

Exercise 1-11. Let ‖ · ‖ be an operator norm. Prove that if ‖X‖ < 1, then

• I −X is invertible,

• the series
∑∞
i=0X

i converges, and

• (I −X)−1 =
∑∞
i=0X

i.

Moreover, prove that in the same norm

‖(I −X)−1‖ ≤ (1− ‖X‖)−1.

Exercise 1-12. Let K be a matrix in Rn×n with non-negative entries and let f, g be two vectors
in Rn with strictly positive entries which satisfy

(Kf)i/gi < λ, (KT g)i/fi < µ ∀i ∈ {1, . . . , n}.

Prove that ‖K‖22 ≤ λµ.

Exercise 1-13. Let A ∈ Rk×l, B ∈ Rl×m and C ∈ Rm×m. Here k ≥ l. If A and C are
orthogonal, that is if CTC = I (the identity on Rm) and ATA = I (the identity on Rl) then
show that ‖ABC‖2 = ‖B‖2.

Exercise 1-14. Prove that the Frobenius norm of a matrix is unchanged by multplication by
unitary matrices. This is an analogue of Theorem 1.33.

Exercise 1-15. Show that for every vector norm ‖ · ‖ on Rn×n there is a number λ > 0 such
that

‖A‖λ = λ‖A‖ A ∈ Rn×n

de�nes a matrix norm.
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Chapter 2

Matrix Factorisations

In this chapter we present various matrix factorisations. These are of interest in their own right,
and also because they form the basis for many useful numerical algorithms.

There are two groups of results presented in this chapter. The �rst kind of results factorises
a matrix A ∈ Cn×n as

A = SÃS−1

where, typically, Ã is of a simpler form than the original matrix A. Results of this type are
matrix diagonalisations and the Jordan canonical form. These factorisations are useful, because
properties of Ã are often easier to understand than properties of A and often questions about A
can be reduced to questions about Ã. For example, since Ax = λx implies Ã(S−1x) = λ(S−1x),
the matrices A and Ã have the same eigenvalues (but di�erent eigenvectors). These factorisations
are typically used in proofs.

The second group of results, including the QR factorisation and LU factorisation, just splits
a matrix A into two, simpler parts:

A = BC

where B and C are matrices of a simpler form than A is, for example triangular matrices. These
factorisations typically form the basis of numerical algorithms, because they allow to split one
complicated problem into two simpler ones. This strategy will be used extensively in the later
chapters of this text.

2.1 Diagonalisation

A matrix A ∈ Cn×n is diagonalised by �nding a unitary matrix Q ∈ Cn×n and a diagonal matrix
D ∈ Cn×n such that

A = QDQ∗.

Since this implies AQ = DQ we see, by considering the individual columns of this matrix
equation, that the diagonal elements ofD are the eigenvalues of A and the (orthonormal) columns
of Q are the corresponding eigenvectors. This insight has several consequences: Firstly, a matrix
can be diagonalised if and only if it has a complete, orthonormal system of eigenvectors. And,
secondly, there can be no direct algoritms to diagonalise a matrix, since the eigenvalues of a
matrix in general cannot be found exactly in �nite time (see the discussion around Theorem 8.2).
Thus, diagonalisation will be mostly useful as a tool in our proofs and not as part of an algorithm.

The basic result in this section is the Schur triangularisation of a matrix; diagonalisation will
follow from this. The next lemma is key in proving the Schur factorisation.

Lemma 2.1. For all A ∈ Cn×n satisfying dim(range(A)) = k ≤ n, there is an orthonormal set
{y1 . . . , yk} ⊆ range(A) with the property that Ayl ∈ span{y1, . . . , yl} for l = 1, . . . , k.

Proof. If k = 1, then there is a y1 ∈ Cn with ‖y1‖2 = 1 which spans range(A). Clearly
Ay1 ∈ range(A) = span{y1}.
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For induction assume that we have the result for some k < n. Let A satisfy dim(range(A)) =
k+1. Choose y1 to be an eigenvector of A with ‖y1‖2 = 1. Let P denote the orthogonal projection
onto span{y1} and P⊥ = I − P . De�ne A⊥ = P⊥A and note that dim(range(A⊥)) = k. By the
inductive hypothesis, there is an orthonormal set {y2, . . . , yk+1} ⊆ range(A⊥) with the property

A⊥yl ∈ span{y2, . . . , yl} l = 2, . . . , k + 1.

Furthermore we have that y1 is orthogonal to span{y2, . . . , yk}. Consider the set {y1, . . . , yk+1}.
Note that Ay1 = λy1. Also

Ayl = (PA+ P⊥A)yl = PAyl +A⊥yl.

Since PAyl ∈ span{y1} and A⊥yl ∈ span{y2, . . . , yl} we obtain

Ayl ∈ span{y1, . . . , yl},

as required.

Theorem 2.2 (Schur Factorisation). For any A ∈ Cn×n, there is a unitary Q ∈ Cn×n and an
upper triangular T ∈ Cn×n such that

A = QTQ∗.

Proof. Let k = dim(range(A)), and construct orthonormal vectors {y1, . . . , yk} as in Lemma 2.1.
Since dim

(
range(A)⊥

)
= n− k, we can �nd an orthonormal basis {yk+1, . . . , yn} of range(A)⊥.

Then {yq, . . . , yn} is an orthonormal basis of Cn and

Ayl ∈ range(A) = span{y1, . . . , yk} ⊆ span{y1, . . . , yl}

for l = k + 1, . . . , n. We also have Ayl ∈ span{y1, . . . , yl} for l = 1, . . . , k and thus

Ayl =
l∑

j=1

tjlyj , l = 1, . . . , n.

Letting Q =
(
y1 · · · yn

)
and de�ning T by (T )ij = tij for i ≤ j and (T )ij = 0 for i > j we obtain

AQ = QT as required.

Theorem 2.3 (Normal Diagonalisation). If A ∈ Cn×n satis�es A∗A = AA∗, then there is
unitary Q ∈ Cn×n and diagonal D ∈ Cn×n such that A = QDQ∗.

Proof. By Schur factorisation, there is T upper triangular and Q unitary such that

A = QTQ∗,

and it su�ces to show that T is diagonal.
We have

A∗A = QT ∗TQ∗ and QTT ∗Q∗ = AA∗,

and since A is normal we deduce that T ∗T = TT ∗. Now

(T ∗T )ij =
∑
k

(T ∗)ik(T )kj =
∑
k

(T̄ )ki(T )kj ,

so that

(T ∗T )ii =
∑
k

|tki|2 =
i∑

k=1

|tki|2.

Similarly,

(TT ∗)ii =
n∑
k=i

|tik|2.
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We now prove that T is diagonal by equating these expressions and using induction.

i = 1 : |t11|2 =
n∑
k=1

|t1k|2,

and so t1k = 0 for k = 2, . . . , n.
Assume for induction in m that tlk = 0 for l = 1, . . . ,m− 1 and all k 6= l. Note that we have

proved this for m = 2. Then

(T ∗T )mm =
m∑
k=1

|tkm|2 = |tmm|2 (by induction hyp.)

(TT ∗)mm =
n∑

k=m

|tmk|2 = |tmm|2 +
n∑

k=m+1

|tmk|2,

and so tmk = 0 for k = m + 1, . . . , n. Also, tmk = 0 for k = 1, . . . ,m − 1 since T is upper
triangular. Thus

tmk = 0 k 6= m

and tlk = 0 l = 1, . . . ,m, k 6= l,

and the induction is complete.

Remark. In the situation of the preceeding theorem, the diagonal elements of D are the
eigenvalues of A and the columns of Q are corresponding eigenvectors. Since Q is unitary, the
eigenvectors are orthogonal and thus the matrix A is normal. When combined with the discussion
after de�nition 1.20 this shows that a matrix A is normal if and only if A∗A = AA∗.

Theorem 2.4 (Hermitian Diagonalisation). If A ∈ Cn×n is Hermitian, then there exists a
unitary matrix Q ∈ Cn×n and diagonal Λ ∈ Rn×n such that A = QΛQ∗.

Proof. Since Hermitian matrices are normal, A can be factorised in the required form with
Λ ∈ Cn×n diagonal by Theorem 2.3. It remains to show that Λ is real. We have

AQ = QΛ,

and hence, if q1, . . . , qn are the columns of Q, we get Aqi = λiqi and ‖qi‖ = 1. This implies

λi = 〈qi, λiqi〉 = 〈qi, Aqi〉 = 〈Aqi, qi〉 = 〈λiqi, qi〉 = λi

for i = 1, . . . , n as required.

To illustrate the usefulness of Hermitian diagonalisation, we consider the following applica-
tion.

Lemma 2.5. Let A ∈ Cn×n be Hermitian and positive de�nite. Then there is a Hermitian,
positive de�nite matrix A1/2 ∈ Cn×n, the square root of A, such that A = A1/2A1/2.

Proof. Since A ∈ Cn×n is positive-de�nite, we have

λi‖xi‖22 = 〈xi, Axi〉 > 0

for all eigenpairs (xi, λi) and thus all eigenvalues are positive.
By Theorem 2.4 we have

A = QΛQ∗

with λ = diag(λ1, . . . , λn). Since all λi ≥ 0, we may de�ne Λ1/2 = diag(
√
λ1, . . . ,

√
λn) and this

is real. Now de�ne
A1/2 = QΛ1/2Q∗. (2.1)

Then A1/2A1/2 = QΛ1/2Λ1/2Q∗ = QΛQ∗ = A as required and, since
√
λi > 0 for all i = 1, . . . , n,

the matrix A1/2 is Hermitian, positive de�nite.
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Remarks.

• A real, positive number λ has two distinct square roots,
√
λ and −

√
λ. Similarly, a Hermi-

tian, positive de�nite matrix A ∈ Cn×n has 2n distinct square roots, obtained by choosing
all possible combination of signs in front of the square roots on the diagonal of Λ1/2 in (2.1).
The square root constructed in the lemma is the only positive one.

• The same principle used to construct the square root of a matrix here, can be used to
construct many di�erent functions of a Hermitian matrix: one diagonalises the matrix and
applies the function to the eigenvalues on the diagonal.

2.2 Jordan Canonical Form

De�nition 2.6. A Jordan block Jn(λ) ∈ Cn×n for λ ∈ C is the matrix satisfying Jk(λ)ii = λ,
Jk(λ)i,i+1 = 1, and Jk(λ)ij = 0 else, for i, j = 1, . . . , n, i.e. a matrix of the form

Jk(λ) =


λ 1

. . .
. . .

. . . 1
λ

 .

A Jordan matrix is a block diagonal matrix J ∈ Cn×n of the form

J =


Jn1(λ1)

Jn2(λ2)
. . .

Jnk
(λk)


where

∑k
j=1 nj = n.

The following factorisation is of central theoretical importance.

Theorem 2.7 (Jordan Canonical Form). For any A ∈ Cn×n there is an invertible S ∈ Cn×n
and a Jordan matrix J ∈ Cn×n satisfying

A = SJS−1

where the diagonal elements λ1, . . . , λk of the Jordan blocks are the eigenvalues of A.

Remarks.

1. Clearly both the normal and Hermitian diagonalisation results reveal the eigenvalues of A:
they are simply the diagonal entries of D and Λ. This is also true of the Jordan and Schur
factorisations. The following lemma shows that triangular matrices reveal their eigenvalues
as diagonal entries. Since both the Jordan Canonical Form and the Schur Factorisation pro-
vide similarity transformations of A which reduce it to triangular form, and since similarity
transformations leave the eigenvalues unchanged, this establishes the desired properties.
Thus all the preceding factorisations are eigenvalue revealing factorisations.

2. An eigenvalue revealing factorisation cannot be achieved in a �nite number of arithmetic
steps, in dimension n ≥ 5, since it implies factorisation of a polynomial equation of degree
n. See Chapter 8.

Lemma 2.8. Let T ∈ Cn×n be triangular. Then

det(T ) =
n∏
i=1

Tii.

Hence the eigenvalues of T are its diagonal entries.
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Proof. Let Tj ∈ Cj×j be upper triangular:

Tj =
(
a b∗

0 Tj−1

)
,

a ∈ C, b, 0 ∈ Cj−1,

Tj−1 ∈ C(j−1)×(j−1) upper triangular.

Then detTj = adet(Tj−1). By induction,

det(T ) =
n∏
i=1

Tii.

Eigenvalues of T are λ such that det(T −λI) = 0. Now T −λI is triangular with diagonal entries
Tii − λ, therefore

det(T − λI) =
n∏
i=1

(Tii − λ).

Hence det(T − λi) = 0 if and only if λi = Tii for some i = 1, . . . , n.

As an example of the central theoretical importance of the Jordan normal form we now prove
a useful lemma showing that a matrix norm can be constructed which, for a given matrix A, has
norm arbitrarily close to the spectral radius.

De�nition 2.9. A δ-Jordan block Jδn(λ) ∈ Cn×n for λ ∈ C is the matrix satisfying Jδk(λ)ii = λ,
Jδk(λ)i,i+1 = δ, and Jδk(λ)ij = 0 else, for i, j = 1, . . . , n. A δ-Jordan matrix is a block diagonal
matrix Jδ ∈ Cn×n of the form

J =


Jδn1

(λ1)
Jδn2

(λ2)
. . .

Jδnk
(λk)


where

∑k
j=1 nj = n.

Lemma 2.10. Let A ∈ Cn×n and δ > 0. Then there is a vector norm ‖ · ‖S on Cn such that
the induced matrix norm satis�es ρ(A) ≤ ‖A‖S ≤ ρ(A) + δ.

Proof. From Theorem 1.30 we already know ρ(A) ≤ ‖A‖ for every matrix norm ‖ · ‖. Thus we
only have to show the second inequality of the claim.

Let J = S−1AS be the Jordan Canonical Form of A and Dδ = diag(1, δ, δ2, . . . , δn−1). Then

(SDδ)−1A(SDδ) = D−1
δ JDδ = Jδ.

De�ne a vector norm ‖ · ‖S on Cn by

‖x‖S =
∥∥(SDδ)−1x

∥∥
∞

for all x ∈ Cn. Then the induced matrix norm satis�es

‖A‖S = max
x 6=0

‖Ax‖S
‖x‖S

= max
x 6=0

‖(SDδ)−1Ax‖∞
‖(SDδ)−1x‖∞

= max
y 6=0

‖(SDδ)−1A(SDδ)y‖∞
‖y‖∞

=
∥∥(SDδ)−1A(SDδ)‖∞

= ‖Jδ‖∞.

Since we know the ‖ · ‖∞-matrix norm from Theorem 1.28 and we have calculated the explicit
form of the matrix (SDδ)−1A(SDδ) above, this is easy to evaluate. We get ‖A‖ ≤ maxi |λi|+δ =
ρ(A) + δ. This completes the proof.
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Remark. In general, ρ( · ) is not a norm. But note that if the Jordan matrix J is diagonal then
δ = 0 and we can deduce the existence of a norm in which ‖A‖S = ρ(A). This situation arises
whenever A is diagonalisable.

2.3 Singular Value Decomposition

The singular value decomposition is based on the fact that, for any matrix A, it is possible to
�nd a set of real positive σi and vectors ui, vi such that

Avi = σiui.

The σi are known as singular values and, in some applications, are more useful than eigenvalues.
This is because the singular values exist even for non-square matrices, because they are always
real, and because the {ui} and {vi} always can be chosen orthogonal. Furthermore, the singular
value decomposition is robust to perturbations, unlike the Jordan canonical form.

De�nition 2.11. Let A ∈ Cm×n with m,n ∈ N. A factorisation

A = UΣV ∗

is called singular value decomposition (SVD) of A, if U ∈ Cm×m and V ∈ Cn×n are unitary,
Σ ∈ Rm×n is diagonal, and the diagonal entries of Σ are σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 where
p = min(m,n). The values σ1, . . . , σp are called singular values of A. The columns of U are
called left singular vectors of A, the columns of V are right singular vectors of A.

A = U · Σ · V ∗

Theorem 2.12 (SVD). Every matrix has a singular value decomposition and the singular values
are uniquely determined.

Proof. Let A ∈ Cm×n. We prove existence of the SVD by induction over p = min(m,n). If p = 0
the matrices U , V , and Σ are just the appropriately shaped empty matrices (one dimension is
zero) and there is nothing to show.

Assume p > 0 and that the existence of the SVD is already known for matrices where one

dimension is smaller than min(m,n). Let σ1 = ‖A‖2 = maxx 6=0
‖Ax‖2
‖x‖2 = max‖x‖2=1 ‖Ax‖2.

Since the map v 7→ Av is continuous and the set {x | ‖x‖2 = 1 } ⊆ Cn is compact, the image
{Ax | ‖x‖2 = 1 } ⊆ Cm is also compact. Since ‖ · ‖2 : Cn → R is continuous there is a v1 ∈ Cn
with ‖v1‖2 = 1 and

‖Av1‖2 = max
‖x‖2=1

‖Ax‖2 = σ1.

De�ning u1 = Av1/σ1 we get ‖u1‖2 = 1.
Extend {v1} to an orthonormal basis {v1, . . . , vn} of Cn and {u1} to an orthonormal basis

{u1, . . . , um} of Cm. Consider the matrices

U1 = (u1, . . . , um) ∈ Cm×m

and
V1 = (v1, . . . , vn) ∈ Cn×n.

Then the product U∗1AV1 is of the form

S = U∗1AV1 =
(
σ1 w∗

0 B

)
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with w ∈ Cn−1, 0 ∈ Cm−1 and B ∈ C(m−1)×(n−1).
For unitary matrices U we have ‖Ux‖2 = ‖x‖2 and thus

‖S‖2 = max
x 6=0

‖U∗1AV1x‖2
‖x‖2

= max
x 6=0

‖AV1x‖2
‖V1x‖2

= ‖A‖2 = σ1.

On the other hand we get∥∥∥S (σ1

w

)∥∥∥
2

=
∥∥∥(σ2

1 + w∗w
Bw

)∥∥∥
2
≥ σ2

1 + w∗w =
(
σ2

1 + w∗w
)1/2∥∥∥(σ1

w

)∥∥∥
2

and thus ‖S‖2 ≥ (σ2
1 + w∗w)1/2. Thus we conclude that w = 0 and thus

A = U1SV
∗
1 = U1

(
σ1 0
0 B

)
V ∗1 .

By the induction hypothesis the (m−1)×(n−1)-matrix B has a singular value decomposition

B = U2Σ2V
∗
2 .

Then

A = U1

(
1 0
0 U2

)
·
(
σ1 0
0 Σ2

)
·
(

1 0
0 V ∗2

)
V ∗1

is a SVD of A and existence of the SVD is proved.
Uniqueness of the largest singular value σ1 holds, since σ1 is uniquely determined by the

relation

‖A‖2 = max
x 6=0

‖UΣV ∗x‖2
‖x‖2

= max
x 6=0

‖Σx‖2
‖x‖2

= σ1.

Uniqueness of σ2, . . . , σn follows by induction as above.

The penultimate line of the proof shows that, with the ordering of singular values as de�ned,
we have the following:

Corollary 2.13. For any matrix A ∈ Cm×n we have ‖A‖2 = σ1.

Remarks.

1. Inspection of the above proof reveals that for real matrices A the matrices U and V are
also real.

2. Ifm > n then the lastm−n columns of U do not contribute to the factorisation A = UΣV ∗:

A = U · Σ · V ∗

Hence we can also write A as A = Û Σ̂V ∗ where Û ∈ Cm×n consists of the �rst n columns
of U and Σ̂ ∈ Cn×n consists of the �rst n rows of Σ. This factorisation is called the reduced
singular value decomposition (reduced SVD) of A.

3. Since we have A∗A = V Σ∗U∗UΣV ∗ = V Σ∗ΣV ∗ and thus A∗A · V = V · Σ∗Σ, we �nd
A∗Avj = σ2

j vj for the columns v1, . . . , vn of V . This shows that the vectors vj are eigen-

vectors of A∗A with eigenvalues σ2
j .

4. From the proof we see that we can get the ‖ · ‖2-norm of a matrix from its SVD: we have
‖A‖2 = σ1.
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Theorem 2.14. For m ≥ n the SVD has the following properties:

1. If A ∈ Rn×n is Hermitian then A = QΛQ∗ with Λ = diag(λ1, . . . , λn) and Q =
(
q1 · · · qn

)
.

An SVD of A may be found in the form A = UΣV T with U = Q, Σ = |Λ|, and

V =
(
v1 · · · vn

)
, vi = sgn(λi)qi.

2. The eigenvalues of A∗A are σ2
i and the eigenvectors of A∗A are the right singular vectors

vi.

3. The eigenvalues of AA∗ are σ2
i and (m − n) zeros. The (right) eigenvectors of AA∗ cor-

responding to eigenvalues σ2
i are the left singular vectors ui corresponding to the singular

values σi.

Proof. 1. By de�nition.

2. We have, from the reduced SVD,

A = Û Σ̂V ∗ =⇒ A∗A = V Σ̂2V ∗ ∈ Rn×n

Since V is orthogonal and Σ̂2 = diag(σ2
1 , . . . , σ

2
n), the result follows.

3. We have
A = UΣV ∗ =⇒ AA∗ = UΣΣ∗U∗

where Ũ ∈ Rm×(m−n) is any matrix such that [U Ũ ] ∈ Rm×m is orthogonal. The result
then follows since

ΣΣ∗ =
(

Σ̂2 0
0 0

)
.

For the rest of this section let A ∈ Cm×n be a matrix with singular value decomposition
A = UΣV ∗ and singular values σ1 ≥ · · · ≥ σr > 0 = · · · = 0. To illustrate the usefulness of the
SVD we prove several fundamental results about it.

Theorem 2.15. The rank of A is equal to r.

Proof. Since U and V ∗ are invertible we have rank(A) = rank(Σ) = r.

Theorem 2.16. We have range(A) = span{u1, . . . , ur} and ker(A) = span{vr+1, . . . , vn}.

Proof. Since Σ is diagonal and V ∗ is invertible we have

range(ΣV ∗) = range(Σ) = span{e1, . . . , er} ⊆ Cm.

This shows
range(A) = range(UΣV ∗) = span{u1, . . . , ur} ⊆ Cm.

We also have
ker(A) = ker(UΣV ∗) = ker(ΣV ∗).

Since V is orthogonal we can conclude

ker(A) = span{vr+1, . . . , vn} ⊆ Cn.
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Theorem 2.17 (The SVD and Eigenvalues). Let A ∈ Rn×n be invertible with SVD A = UΣV T .
If

H =
(

0 AT

A 0

)
∈ R2n×2n

and

U = (u1 · · · un)
V = (v1 · · · vn)
Σ = diag(σ1, . . . , σn)

then H has

• 2n eigenvalues {±σi}ni=1

• eigenvectors
{

1√
2

(
vi
±ui

) ∣∣ i = 1, . . . , n
}

Proof. If Hx = λx with x = (yT , zT )T then

AT z = λy

Ay = λz.

Hence

AT (λz) = λ2y

and ATAy = λ2y.

Thus λ2 ∈ {σ2
1 , . . . , σ

2
n} and so the 2n eigenvalues of H are drawn from the set

{±σ1, . . . ,±σn}.

Note that
ATU = V Σ, AV = UΣ

and so
Avi = σiui, A

Tui = σivi.

The eigenvalue problem for H may be written as

Ay = λz, AT z = λy.

Hence, taking λ = ±σi, we obtain 2n solutions of the eigenvalue problem given by

(yT , zT ) =
1√
2

(vi,±ui).

This exhibits a complete set of 2n eigenvectors for H.

2.4 QR Factorisation

The SVD factorisation, like the four preceding it, reveals eigenvalues; hence it cannot be achieved
in a �nite number of steps. The next three factorisations, QR, LU and Cholesky do not reveal
eigenvalues and, as we will show in later chapters, can be achieved in a polynomial number
of operations, with respect to dimension n. Recall the following classical algorithm for the
construction of an orthonormal basis from the columns of a matrix A.
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Algorithm (Gram-Schmidt orthonormalisation).
input: A ∈ Cm×n with m ≥ n
output: Q ∈ Cm×m unitary, R ∈ Cm×n upper triangular with A = QR
let a1, . . . , an ∈ Cm be the columns of A.

1: R = 0
2: for j=1,. . . ,n do
3: q̂j = aj −

∑j−1
k=1 rkjqk with rkj = 〈qk, aj〉

4: rjj = ‖q̂j‖2
5: if rjj > 0 then
6: qj = q̂j/rjj
7: else
8: let qj be an arbitrary normalised vector orthogonal to q1, . . . , qj−1

9: end if
10: end for
11: choose qn+1, . . . , qm to make q1, . . . , qm an orthonormal basis.
12: let q1, . . . , qm ∈ Cm be the columns of Q; let (R)ij = rij , i ≤ j, (R)ij = 0 otherwise.

Am

n

= Q · R

From this algorithm we prove:

Theorem 2.18 (QR factorisation). Every matrix A ∈ Cm×n with m ≥ n can be written as
A = QR where Q ∈ Cm×m is unitary and R ∈ Cm×n is upper triangular.

Proof. The Gram-Schmidt algorithm calculates matrices Q and R with

(QR)ij =
( j∑
k=1

qkrkj

)
i

=
(j−1∑
k=1

qkrkj + q̂j

)
i

= (aj)i

and thus we get A = QR.
By construction we have ‖qj‖2 = 1 for j = 1, . . . ,m. We use induction to show that the

columns q1, . . . , qj are orthogonal for all j ∈ {1, . . . ,m}. For j = 1 there is nothing to show.
Now let j > 1 and assume that q1, . . . , qj−1 are orthogonal. We have to prove 〈qi, qj〉 = 0 for
i = 1, . . . , j − 1. If rjj = 0, this holds by de�nition of qj . Otherwise we have

〈qi, qj〉 =
1
rjj
〈qi, q̂j〉

=
1
rjj

(
〈qi, aj〉 −

j−1∑
k=1

rkj〈qi, qk〉
)

=
1
rjj

(
〈qi, aj〉 − rij

)
= 0.

Thus induction shows that the columns of Q are orthonormal and hence that Q is unitary.

Remarks.

1. The factorisation in the theorem is called full QR factorisation. Since all entries below the
diagonal of R are 0, the columns n+ 1, . . . ,m of Q do not contribute to the product QR.
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Let Q̂ ∈ Cm×n consist of the �rst n columns of Q and R̂ ∈ Cn×n consist of the �rst n
rows of R. Then we have A = Q̃R̃. This is called the reduced QR factorisation of A. The
following picture illustrates the situation.

Am

n

= Q

n m−n

· R

n

m−n

2. For m = n we get square matrices Q,R ∈ Cn×n. Since

det(A) = det(QR) = det(Q) det(R)

and det(Q) ∈ {+1,−1} the matrix R is invertible if and only if A is invertible.

3. The Gram-Schmidt orthonormalisation algorithm is numerically unstable and should not
be used to calculate a QR factorisation in practice.

2.5 LU Factorisation

De�nition 2.19. A triangular matrix is said to be unit if all diagonal entries are equal to 1.

De�nition 2.20. The jth principal sub-matrix of a matrix A ∈ Cn×n is the matrix Aj ∈ Cj×j
with (Aj)kl = akl for 1 ≤ k, l ≤ j.

Theorem 2.21 (LU Factorisation). a) Let A ∈ Cn×n be a matrix such that Aj is invertible
for j = 1, . . . , n. Then there is a unique factorisation A = LU where L ∈ Cn×n is unit lower
triangular and U ∈ Cn×n is non-singular upper triangular. b) If Aj is singular for one j ∈
{1, . . . , n} then there is no such factorisation.

The following picture gives a graphical representation of the LU factorisation.

A = L · U

Proof. a) We use a proof by induction: If n = 1 we have a1 6= 0 by assumption and can set
L = (1) ∈ C1×1 and U = (a11) ∈ C1×1 to get A = LU . Since L is the only unit lower triangular
1× 1-matrix the factorisation is unique.

Now let n > 1 and assume that any matrix A ∈ C(n−1)×(n−1) can be uniquely factorised in
the required form A = LU if all its principal sub-matrices are invertible. We write A ∈ Cn×n as

A =
(
An−1 b
c∗ ann

)
(2.2)

where An−1 is the (n − 1)th principal sub-matrix of A, and b, c ∈ C(n−1) and ann ∈ C are the
remaining blocks. We are looking for a factorisation of the form

A =
(
L 0
`∗ 1

)(
U u
0 η

)
=
(
LU Lu
`∗U `∗u+ η

)
(2.3)
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with L ∈ C(n−1)×(n−1) unit lower triangular, U ∈ C(n−1)×(n−1) invertible upper triangular,
`, u ∈ Cn−1 and η ∈ C\{0}. We compare the blocks of (2.2) and (2.3).

By the induction hypothesis L and U with An−1 = LU exist and are unique. Since the matrix
L is invertible the condition Lu = b determines a unique vector u. Since U is invertible there is
an uniquely determined ` with U∗` = c and thus `∗U = c∗. Finally the condition `∗u+ η = ann
uniquely determines η ∈ C. This shows that the required factorisation for A exists and is unique.
Since 0 6= det(A) = 1 · η · detU the upper triangular matrix is non-singular and η 6= 0.

b) Assume that A has an LU factorisation and let j ∈ {1, . . . , n}. Then we can write A = LU
in block form as(

A11 A12

A21 A22

)
=
(
L11 0
L21 L22

)(
U11 U12

0 U22

)
=
(
L11U11 L11U12

L21U11 L21U12 + L22U22

)
where A11, L11, U11 ∈ Cj×j . We get

det(Aj) = det(A11) = det(L11U11) = det(L11) det(U11) = 1 · det(U11) 6= 0

and thus Aj is non-singular.

To illustrate the failure of LU factorisation when the principal submatrices are not invertible,
consider the following matrix:

A =

0 0 1
1 1 0
0 2 1


This matrix is clearly non-singular: det(A) = 2. However, both principal sub-matrices are
singular:

A1 = (0)

A2 =
(

0 0
1 1

)
and therefore the factorisation A = LU is not possible. In contrast,

A′ =

1 1 0
0 2 1
0 0 1


(which is a permutation of the rows of A) has non-singular principal sub-matrices

A′1 = (1)

A′2 =
(

1 1
0 2

)
and hence A′ has an LU factorisation.

Because a non-singular matrix may not have an LU factorisation, while that same matrix
with its rows interchanged may be factorisable, it is of interest to study the e�ect of permutations
on LU factorisation.

Theorem 2.22 (LU Factorisation with Permutations). If A ∈ Cn×n is invertible, then there
exists a permutation matrix P ∈ Cn×n, unit lower triangular L ∈ Cn×n, and non-singular upper
triangular U ∈ Cn×n such that PA = LU .

Proof. We prove the result by induction. Note that the base case n = 1 is straightforward:
P = L = 1 and U = A 6= 0. Now assume the theorem is true for the (n− 1)× (n− 1) case. Let
Ã ∈ Cn×n be invertible. Choose a permutation P1 such that

(P1Ã)11 := a 6= 0.
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This is possible since Ã invertible implies that the �rst column of Ã has a non-zero entry and
P1 permutes rows. Now we can factorise P1Ã as follows:

P1Ã :=
(
a u∗

l B

)
=
(

1 0
l/a I

)(
a u∗

0 A

)

which is possible if A = B − lu∗/a = B − 1
a l ⊗ u. Now

0 6= det(Ã) = ± det(P1Ã) = a det(A)

and so det(A) 6= 0 since a 6= 0. Thus A is invertible and A = P2LU . Hence

P1Ã =
(

1 0
l/a I

)(
1 0
0 P2L

)(
a u∗

0 U

)
=
(

1 0
l/a P2L

)(
a u∗

0 U

)
=
(

1 0
0 P2

)(
1 0

PT2 l/a L

)(
a u∗

0 U

)
= P3L̃Ũ ,

and therefore
PT3 P1Ã = L̃Ũ .

Note that L̃ is unit lower triangular and that det(Ũ) = adet(U) 6= 0 so that Ũ is non-singular
upper trangular. Since P = PT3 P1 is a permutation the result follows.

2.6 Cholesky Factorisation

Theorem 2.23 (Cholesky Factorisation). If A ∈ Cn×n is positive de�nite then there exists a
unique upper triangular R ∈ Cn×n with positive diagonal elements such that A = R∗R.

A = R∗ · R

Proof. We use induction. The claim is clearly true if n = 1: A = α ∈ R+, R =
√
α.

Assume the claim holds true for An−1 ∈ C(n−1)×(n−1):

An−1 = R∗n−1Rn−1, (Rn−1)ii > 0 i = 1, . . . , n− 1.

Then write A ∈ Cn×n as

A =
(
An−1 c
c∗ α

)
.

It is straightforward to show that An−1 is Hermitian and positive de�nite, and that α is real
and positive, because A is Hermitian and positive de�nite.

We can now attempt to factor A as follows:

A = R∗R :=
(
R∗n−1 0
r∗ β

)(
Rn−1 r

0 β

)
=
(
An−1 R∗n−1r
r∗Rn−1 ‖r‖22 + β2

)
.
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For this factorisation to work we require r ∈ Cn−1 and β ∈ R+ such that

R∗n−1r = c

β2 = α− ‖r‖22.

Since Rn−1 is non-singular (positive diagonal elements), r and β are uniquely de�ned.
It remains to show β ∈ R+. Note that, since A has positive eigenvalues det(A) > 0 and so

0 < det(A) = det(R∗R) = det(R∗) det(R)

= β2 det(R∗n−1) det(Rn−1 = β2 det(Rn−1)2.

Here we have used the fact that det(R∗n−1) = det(Rn−1) because Rn−1 is triangular with real
positive entries. But det(Rn−1)2 ∈ R+ since Rn−1 has diagonals in R+. Thus β2 > 0 and we
can choose β ∈ R+.
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Exercises

Exercise 2-1. By following the proof of the existence of a singular value decomposition, �nd
an SVD for the following matrices:

A =
(

1 2
3 1

)
, B =

−2 0 1
2 0 1
0
√

18 0

 .

Exercise 2-2. Show that a symmetric positive de�nite matrix A ∈ Rn×n can be written in the
form

A =
(
a zT

z A1

)
=
(
α 0
1
αz I

)(
1 0
0 A1 − 1

azz
T

)(
α 1

αz
T

0 I

)
.

where α =
√
a. Based on this observation �nd an alternative proof of Theorem 2.23, for the

Cholesky factorisation of real symmetric positive de�nite matrices.

Exercise 2-3. Let A ∈ Rm×n have singular values (σi | i = 1, . . . , n ). Show that ‖A‖2 = σmax
and, if m = n and A is invertible, ‖A−1‖−1

2 = σmin.

Exercise 2-4. Prove Theorem 1.16 concerning properties of similar matrices.
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Chapter 3

Stability and Conditioning

Rounding errors lead to computational results which are di�erent from the theoretical ones.
The methods from this chapter will help us to answer the following question: how close is the
calculated result to the correct one?

It is common to view the computed solution of a problem in linear algebra as the exact
solution to a perturbed problem. This approach to the study of error is known as backward
error analysis. If the perturbation is small (when measured in terms of machine precision)
the algorithm is termed backward stable; when the perturbation is not small it is referred to as
unstable. Thus the e�ect of computing the solution in �oating point arithmetic, using a particular
algorithm, is converted into a perturbation of the original problem. Once this perturbed problem
is known, the central issue in studying error is to estimate the di�erence between the solution
of the original problem and a perturbed problem: the issue of conditioning. Conditioning is a
property of the problem at hand, whilst the size of the perturbation arising in the backward
error analysis framework is a property of the algorithm.

The three problems (SLE), (LSQ) and (EVP) can all be viewed as solving a linear or nonlinear
equation of the form

G(y, η) = 0, (3.1)

for some G : Cp × Cq → Cp. Here y is the solution that we want to �nd, and η the data which
de�nes the problem. For (SLE) and (LSQ) the problem is linear and y = x (see below for a
proof of this for (LSQ)) and for (EVP) it is nonlinear and y = (x, λ). The parameter η is thus
de�ned by the matrix A and, for (SLE) and (LSQ), the matrix A and the vector b. Backward
error analysis will enable us to show that the computed solution ŷ solves

G(ŷ, η̂) = 0.

Conditioning is concerned with estimating y− ŷ in terms of η− η̂. Since conditioning of a given
problem will a�ect the error analysis for all algorithms applied to it, we start with its study, for
each of our three problems in turn. The following de�nition will be useful in this chapter.

De�nition 3.1. Let f = f(η) : Cq → Cp. We write f = O(‖η‖α) for α > 0 if there is a constant
C > 0 such that ‖f‖ ≤ C‖η‖α uniformly as η → 0.

3.1 Conditioning of SLE

A problem is called well conditioned if small changes in the problem only lead to small changes
in the solution and badly conditioned if small changes in the problem can lead to large changes
in the solution. In this context the following de�nition is central.

De�nition 3.2. The condition number κ(A) of a matrix A ∈ Cn×n in the norm ‖ · ‖ is the
number

κ(A) =

{
‖A‖ · ‖A−1‖ if A is invertible and

+∞ else.
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For this section �x a vector norm ‖ · ‖ and an induced matrix norm ‖ · ‖. By Theorem 1.27
these norms then satisfy

‖Ax‖ ≤ ‖A‖ · ‖x‖ for all x ∈ Cn, A ∈ Cn×n

‖I‖ = 1.

Remark. We always have ‖I‖ = ‖AA−1‖ ≤ ‖A‖‖A−1‖ = κ(A). For induced matrix norms this
implies κ(A) ≥ 1 for every A ∈ Cn×n.

Example. Let A be real, symmetric and positive-de�nite with eigenvalues

λmax = λ1 ≥ λ2 ≥ · · · ≥ λn = λmin > 0.

Then we have ‖A‖2 = λmax. Since the matrix A−1 has eigenvalues 1/λ1, . . . , 1/λn we �nd
‖A−1‖2 = λ−1

min
and thus the condition number of A in the 2-norm is

κ(A) =
λmax

λmin

. (3.2)

Proposition 3.3. Let Ax = b and A(x+ ∆x) = b+ ∆b. Assume b 6= 0. Then

‖∆x‖
‖x‖

≤ κ(A)
‖∆b‖
‖b‖

.

Proof. If A is not invertible the right hand side of the inequality is +∞ and the result holds.
Thus we assume that A is invertible and we have

‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖. (3.3)

Since A−1∆b = ∆x we get

‖∆x‖
‖x‖

=
‖A−1∆b‖
‖x‖

≤ ‖A
−1‖‖∆b‖
‖x‖

≤ ‖A‖‖A−1‖‖∆b‖
‖b‖

where the last inequality is a consequence of (3.3).

The previous proposition gave an upper bound on how much the solution of the equation
Ax = b can change if the right hand side is perturbed. The result shows that the problem is well
conditioned if the condition number κ(A) is small. Proposition 3.5 below gives a similar result
for perturbation of the matrix A instead of the vector b. For the proof we will need the following
lemma.

Lemma 3.4. Assume that A ∈ Cn×n satis�es ‖A‖ < 1 in some induced matrix norm. Then
I +A is invertible and

‖(I +A)−1‖ ≤ (1− ‖A‖)−1.

Proof. With the triangle inequality we get

‖x‖ = ‖(I +A)x−Ax‖
≤ ‖(I +A)x‖+ ‖ −Ax‖
≤ ‖(I +A)x‖+ ‖A‖‖x‖

and thus
‖(I +A)x‖ ≥

(
1− ‖A‖

)
‖x‖

for every x ∈ Cn. Since this implies (I +A)x 6= 0 for every x 6= 0, and thus the matrix I +A is
invertible.

Now let b 6= 0 and x = (I +A)−1b. Then

‖(I +A)−1b‖
‖b‖

=
‖x‖

‖(I +A)x‖
≤ 1

1− ‖A‖
.
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Since this is true for all b 6= 0, we have

‖(I +A)−1‖ = sup
b 6=0

‖(I +A)−1b‖
‖b‖

≤ 1
1− ‖A‖

.

This completes the proof.

Proposition 3.5 (Conditioning of SLE). Let x solve the equations

Ax = b and (A+ ∆A)(x+ ∆x) = b.

Assume that A is invertible with condition number κ(A) in some induced matrix norm ‖ · ‖.
Then we have, for κ(A)‖∆A‖ < ‖A‖,

‖∆x‖
‖x‖

≤ κ(A)

1− κ(A)‖∆A‖‖A‖

· ‖∆A‖
‖A‖

.

Proof. Note that

‖A−1∆A‖ ≤ ‖A−1‖‖∆A‖ = κ(A)
‖∆A‖
‖A‖

< 1. (3.4)

Here I +A−1∆A is invertible by Lemma 3.4.
We have

(A+ ∆A)∆x = −∆Ax

and thus
(I +A−1∆A)∆x = −A−1∆Ax.

Using Lemma 3.4 we can write

∆x = −(I +A−1∆A)−1A−1∆Ax

and we get

‖∆x‖ ≤ ‖(I +A−1∆A)−1‖‖A−1∆A‖‖x‖ ≤ ‖A−1∆A‖
1− ‖A−1∆A‖

‖x‖.

Using (3.4) and the fact that the map x 7→ x/(1 − x) is increasing on the interval [0, 1) we
get

‖∆x‖
‖x‖

≤
κ(A)‖∆A‖‖A‖

1− κ(A)‖∆A‖‖A‖

.

This is the required result.

Refer to Exercise 3-2 for a result which combines the statements of propositions 3.3 and 3.5.

3.2 Conditioning of LSQ

In this section we study the conditioning of the following problem: given A ∈ Cm×n with m ≥ n,
rank(A) = n and b ∈ Cm, �nd x ∈ Cn which minimizes ‖Ax− b‖2.

For expository purposes consider the case where A and b are real. Notice that then x solving
(LSQ) minimizes ϕ : Rn → R given by

ϕ(x) :=
1
2
〈Ax,Ax〉 − 〈Ax, b〉+

1
2
‖b‖22.

This is equivalent to minimizing

1
2
〈x,A∗Ax〉 − 〈x,A∗b〉+

1
2
‖b‖22.
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(Note that A∗ = AT in this real case). This quadratic form is positive-de�nite since A∗A is
Hermitian and has positive eigenvalues under (3.5). The quadratic form is minimized where the
gradient is zero, namely where

A∗Ax = A∗b.

Although we have derived this in the case of real A, b, the �nal result holds as stated in the
complex case; see Chapter 7.

Consider the reduced SVD A = Û Σ̂V ∗ where Û ∈ Cm×n, Σ̂ ∈ Rn×n with Σii = σi, and
V ∈ Cn×n. The assumption on rank(A) implies, by Theorem 2.15,

σ1 ≥ σ2 ≥ · · · ≥ σn > 0. (3.5)

In particular, A∗A = V Σ2V ∗ is invertible. The solution of (LSQ) is hence unique and given by
solution of the normal equations

x = (A∗A)−1A∗b.

De�nition 3.6. For A ∈ Cm×n, the matrix A† = (A∗A)−1A∗ ∈ Cn×m is called the pseudo-
inverse (or Moore-Penrose inverse) of A.

With this notation the solution of (LSQ) is

x = A†b.

De�nition 3.7. For A ∈ Cm×n with m ≥ n and n positive singular values, de�ne the condition
number of A in the norm ‖ · ‖ to be

κ(A) =

{
‖A‖ · ‖A†‖ if rank(A) = n and

+∞ else.

Remark. Since for square, invertible matrices A we have A† = A−1, the de�nition of κ(A) is
consistent with the previous one for square matrices. As before the condition number depends
on the chosen matrix norm.

Lemma 3.8. Let A ∈ Cm×n with m ≥ n have n positive singular values satisfying (3.5). Then
the condition number in the ‖ · ‖2-norm is

κ(A) =
σ1

σn
.

Proof. Let A = Û Σ̂V ∗ be a reduced SVD of A. Then A∗A = V Σ̂2V ∗ and thus

A† = V Σ̂−1Û∗. (3.6)

This equation is a reduced SVD for A† (modulo ordering of the singular values) and it can be
extended to a full SVD by adding m−n orthogonal columns to Û and zeros to Σ̂−1. Doing this
we �nd, by Corollary 2.13,

κ(A) = ‖A‖2‖A†‖2 = σ1 ·
1
σn
.

Notice that (3.6) implies
Ax = AA†b = Û Û∗b

and hence that
‖Ax‖2 ≤ ‖UU∗b‖2 = ‖U∗b‖2 = ‖b‖2

by the properties of orthogonal matrices. Thus we may de�ne θ ∈ [0, π/2] by cos(θ) = ‖Ax‖2
‖b‖2 .
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Theorem 3.9. Assume that x solves (LSQ) for (A, b) and x+ ∆x solves (LSQ) for (A, b+ ∆b).
De�ne η = ‖A‖2‖x‖2/‖Ax‖2 ≥ 1. Then we have

‖∆x‖2
‖x‖2

≤ κ(A)
η cos(θ)

· ‖∆b‖2
‖b‖2

where κ(A) is the condition number of A in ‖ · ‖2-norm.

Proof. We have x = A†b and x+ ∆x = A†(b+ ∆b). Linearity then gives ∆x = A†∆b and we get

‖∆x‖2
‖x‖2

≤ ‖A
†‖2‖∆b‖2
‖x‖2

=
κ(A)‖∆b‖2
‖A‖2‖x‖2

=
κ(A)‖∆b‖2
η‖Ax‖2

=
κ(A)
η cos(θ)

· ‖∆b‖2
‖b‖2

.

Remark. The constant κ(A)/η cos(θ) becomes large if either κ(A) is large or θ ≈ π/2. In either
of these cases the problem is badly conditioned. The �rst case involves only the singular values
of A. The second case involves a relationship between A and b. In particular cos(θ) is small if
the range of A is nearly orthogonal to b. Then

ϕ(x) ≈ 1
2
‖Ax‖22 +

1
2
‖b‖22

so that simply setting x = 0 gives a good approximation to the minimizer; in this case small
changes in b can induce large relative changes in x.

Proof of the following result is left as Exercise 3-4.

Theorem 3.10. Let θ and η as above. Assume that x solves (LSQ) for (A, b) and x+∆x solves
(LSQ) for (A+ ∆A, b). Then

‖∆x‖2
‖x‖2

≤
(
κ(A) +

κ(A)2 tan(θ)
η

)
· ‖∆A‖2
‖A‖2

where κ(A) is the condition number of A in ‖ · ‖2-norm.

More generally, when both the matrix A and vector b are perturbed one has

Theorem 3.11 (Conditioning of LSQ). Assume that x solves (LSQ) for (A, b) and x + ∆x
solves (LSQ) for (A+ ∆A, b+ ∆b). Let r = b−Ax and

δ = max
(‖∆A‖2
‖A‖2

,
‖∆b‖2
‖b‖2

)
.

Then
‖∆x‖2
‖x‖2

≤ κ(A)δ
1− κ(A)δ

(
2 + (κ(A) + 1)

‖r‖2
cos(θ)η‖b‖2

)
where κ(A) is the condition number of A in ‖ · ‖2-norm.

3.3 Conditioning of EVP

In this section we will discuss the conditioning of the eigenvalue problem (EVP), i.e. we will
discuss how much the eigenvalues of a matrix can change, if the matrix is changed by a small
amount. A preliminiary result is given in the following theorem: the eigenvalues change con-
tinuously when the matrix is changed. A more detailed analysis is presented in the rest of the
section.
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Theorem 3.12 (Continuity of Eigenvalues). Let λ(A) denote the vector of eigenvalues of the
matrix A ∈ Cn×n, ordered in decreasing absolute value, and repeated according to algebraic
multiplicities. Then λ : Cn×n → Cn is continuous.

Proof. This follows since the eigenvalues are the roots of the characteristic polynomial of A; this
has coe�cients continuous in A.

Before discussing the conditioning of eigenvalue problems we make a brief diversion to state
a version of the implicit function theorem (IFT) which we will then use.

Theorem 3.13 (IFT). Let G : Cl × Cm → Cm be two times di�erentiable and assume that
G(x, y) = 0 for some (x, y) ∈ Cl × Cm. If DyG(x, y) is invertible then, for all su�ciently small
∆x, there is a unique solution ∆y of the equation

G(x+ ∆x, y + ∆y) = 0

in a small ball at the origin. Furthermore the solution ∆y satis�es

DxG(x, y) ∆x+DyG(x, y) ∆y = O
(
‖∆x‖2

)
.

De�nition 3.14. For A ∈ Cn×n, the eigenvalue condition number for an eigenvalue λ ∈ C of a
matrix A ∈ Cn×n is

κA(λ) =

{
|〈x, y〉|−1, if 〈x, y〉 6= 0 and

∞, else,

where x and y are the normalised right and left eigenvectors for eigenvalue λ.

Theorem 3.15 (Conditioning of EVP). Let λ be a simple eigenvalue of A corresponding to right
and left normalized eigenvectors x and y. Assume 〈y, x〉 6= 0. Then for all su�ciently small
∆A ∈ Cn×n the matrix A+ ∆A has an eigenvalue λ+ ∆λ with

∆λ =
1
〈y, x〉

(
〈y,∆Ax〉+O

(
‖∆A‖22

))
.

Proof. De�ne G : Cn×n × Cn × C→ Cn × C by

G(A, x, λ) =
(
Ax− λx

1
2‖x‖

2
2 − 1

2

)
.

Thus we have G(A, x, λ) = 0 if and only if x is a normalized eigenvector of A with eigenvalue λ
and clearly G ∈ C∞.

We will apply the IFT with l = n2 and m = n+1 to write (x, λ) as a function of A: Provided
the invertibility condition holds, the equation

G(A+ ∆A, x+ ∆x, λ+ ∆λ) = 0

has, for su�ciently small ∆A, a solution (∆x,∆λ) satisfying

DAG(A, x, λ) ∆A+D(x,λ)G(A, x, λ)
(

∆x
∆λ

)
= O

(
‖∆A‖2

)
.

Now computing the derivatives of G gives

D(x,λ)G(A, x, λ) =
(
A− λI −x
x∗ 0

)
∈ C(n+1)×(n+1)

and, for every C ∈ Cn×n,

DAG(A, x, λ) C =
(
Cx
0

)
∈ Cn+1
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To show that D(x,λ)G(A, x, λ) is invertible assume D(x,λ)G(A, x, λ) (y, µ) = 0 for y ∈ Cn and
µ ∈ C. It su�ces to show that this implies (y, µ) = 0. From

(A− λI)y − xµ = 0
x∗y = 0

we get
(A− λI)2y = 0 and 〈x, y〉 = 0.

This implies (A−λI) has a two dimensional null-space, contradicting simplicity by Lemma 1.17,
unless y = 0. Hence it follows that y = 0, µ = 0, and so D(x,λ)G is invertible.

Finally, (
∆
δ

)
=
(

∆Ax
0

)
+
(
A− λI −x
x∗ 0

)(
∆x
∆λ

)
.

satis�es
‖∆‖2 + |δ| = O

(
‖∆A‖22

)
.

by Theorem 3.13. Using
∆ = ∆Ax+ (A− λI)∆x− x∆λ.

we �nd
−y∗x∆λ+ y∗∆Ax = y∗∆ = O

(
‖∆A‖22

)
and the result follows.

Corollary 3.16. Let λ be a simple eigenvalue of A corresponding to right and left normalized
eigenvectors x and y. Then for all su�ciently small ∆A ∈ Cn×n the matrix A + ∆A has an
eigenvalue λ+ ∆λ with

|∆λ| ≤ κA(λ)
(
‖∆A‖2 +O

(
‖∆A‖22

))
.

3.4 Stability of Algorithms

The stability of an algorithm measures how susceptible the result is to rounding errors occurring
during the computation. Consider the general framework for all our problems, namely equation
(3.1), where y denotes the solution we wish to compute and η the input data. Then we may
view a locally unique family of solutions to the problem as a mapping from the input data to
the solution: y = g(η). For example, for (SLE) we have y = x, η = (A, b) and g(η) = A−1b. We
assume that the algorithm returns the computed result ŷ 6= y which can be represented as the
exact image ŷ = g(η̂) of a di�erent input value η̂.

De�nition 3.17. The quantity ∆y = ŷ−y is called the forward error and ∆η = η̂−η is called a
backward error. If η̂ is not uniquely de�ned then we make the choice of η which results in minimal
‖∆η‖. The relative backward error is ‖∆η‖/‖η‖ and the relative forward error is ‖∆y‖/‖y‖.

input data

results

η

η̂

y

ŷ

exact

exact

computed∆η ∆y
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As an illustration of the concept, imagine that we solve (SLE) and �nd x̂ satisfying Ax̂− b =
∆b. Then ∆x := x− x̂ is the forward error and ∆b the backward error. The following theorem
is a direct consequence of Proposition 3.3.

Theorem 3.18. For the problem (SLE) we have

rel. forward error ≤ κ(A) · rel. backward error.

Internally computers represent real number using only a �nite number of bits. Thus they
can only represent �nitely many numbers and when dealing with general real numbers rounding
errors will occur. Let F ⊂ R be the set of representable numbers and let fl: R → F be the
rounding to the closest element of F.

In this book we will use a simpli�ed model for computer arithmetic which is described by the
following two assumptions. The main simpli�cation is that we ignore the problems of numbers
which are unrepresentable because they are very large (over�ows) or very close to zero (under-
�ows). We simply use a model in which every bounded interval of R is approximated by a �nite
set of numbers from F in such a way that the following assumption holds:

Assumption 3.19. There is a parameter εm > 0 (machine epsilon) such that the following
conditions hold.

A1: For all x ∈ R there is an ε ∈ (−εm,+εm) with

fl(x) = x · (1 + ε).

A2: For each operation ∗ ∈ {+,−, ·, /} and every x, y ∈ F there is a δ ∈ (−εm,+εm) with

x~ y = (x ∗ y) · (1 + δ)

where ~ denotes the computed version of ∗.

De�nition 3.20. An algorithm, is called backward stable if the relative backward error satis�es

‖∆η‖
‖η‖

= O(εm).

Remark. Some algorithms which are backward stable by the de�nition are termed unstable in
practice. This occurs when the constant in the O(εm) term depends badly on some measure of
the problem dimension � for instance grows exponentially in n for the (SLE). For this reason,
rather than just stating a backward stability result, we will often try to identify a norm ‖ · ‖ and
constant C(n) such that

‖∆η‖
‖η‖

≤ C(n)εm.

This, of course, establishes backward stability. But it gives more detailed information on exactly
when the backward error is small, as a function of problem size. Note, however, that statements
about the dependence of the constants in the backward error are norm-dependent. The de�nition
of backward stable itself is not.

The typical way to use backward stability is in a two-step procedure as follows. In the �rst
step, backward error analysis, one shows that the algorithm in question is backward stable, i.e.
that the in�uence of rounding errors can be represented as a small perturbation ∆x of the original
problem. (This is a property of the algorithm used.) In the second step one uses results like
Theorem 3.18 about the conditioning of the problem (which does not depend on the algorithm
used) to show that the forward error is also small. Together these steps show that the calculated
result is close the the exact result.

We give a simple example of a backward stability calculation.

Lemma 3.21. The calculated subtraction 	 is backward stable.
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Proof. The exact result of a subtraction is given by g(x1, x2) = x1 − x2, the computed result is
g̃(x1, x2) = fl(x1)	 fl(x2). Using Assumption A1 we get

fl(x1) = x1(1 + ε1) and fl(x2) = x2(1 + ε2)

with |ε1|, |ε2| < εm. Using Assumption A2 we get

fl(x1)	 fl(x2) =
(
fl(x1)− fl(x2)

)
(1 + ε3)

where |ε3| < εm. This gives

fl(x1)	 fl(x2) =
(
x1(1 + ε1)− x2(1 + ε2)

)
(1 + ε3)

= x1(1 + ε1)(1 + ε3)− x2(1 + ε2)(1 + ε3)
= x1(1 + ε4)− x2(1 + ε5)

where ε4 = ε1 + ε3 + ε1ε3 and ε5 = ε2 + ε3 + ε2ε3 satisfy |ε4|, |ε5| ≤ 2εm +O(ε2
m) = O(εm) for

εm → 0.
Thus for the input error we can choose

x =
(
x1

x2

)
, x̂ =

(
x1(1 + ε4)
x2(1 + ε5)

)
, ∆x = x̂− x

and we get ‖∆x‖2 =
√
ε2

4x
2
1 + ε2

5x
2
2 ≤ O(εm)‖x‖2. This completes the proof.

Remarks.

1. The above proof is a case where the x̂ from the de�nition of the backward error is not
uniquely determined. But since we are only interested in the x̂ which minimizes the
backward error, we can choose any x̂ which gives the result ‖∆x‖2 ≤ O(εm)‖x‖2. The
optimal x̂ can only be better.

2. Similar proofs show that the operations ⊕, � and � are also backward stable.

3. Proofs of backward stability have to analyse the in�uence of rounding errors and thus are
typically based on our Assumptions A1 and A2 about computer arithmetic. Since they
tend to be long and involved we omit most of these proofs in this book. We frequently
study the statements of backward stability results, however, as they give useful practical
insight into the e�cacy of algorithms.
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Exercises

Exercise 3-1. Choose a matrix norm and calculate the condition number of the matrix

A =
(
ε 1
1 1

)
in this norm.

Exercise 3-2. Assume that A is invertible with κ(A)‖∆A‖/‖A‖ < 1 in some induced matrix
norm. Let x be a solution of Ax = b and let x̂ be a solution of (A+ ∆A)x̂ = b+ ∆b. Show that

‖x̂− x‖
‖x‖

≤ κ(A)

1− κ(A)‖∆A‖‖A‖

·
(‖∆A‖
‖A‖

+
‖∆b‖
‖b‖

)
.
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Exercise 3-3. Let A = UΣV T be an SVD factorization of A ∈ Rm×n with m ≥ n and rank=n.
Prove that there exists a matrix ∆A with ‖∆A‖2 = σmin such that A + ∆A does not have
rank n.

Exercise 3-4. Prove Theorem 3.10.

Exercise 3-5. Show that the calculated arithmetic operations ⊕, � and � are backward stable.
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Chapter 4

Complexity of Algorithms

In this chapter we study methods which quantify how long it takes to solve a numerical problem
on a computer. Speci�cally we focus on the question how the run time, as measured by the
number of algebraic operations, depends on some measure of the problem size.

4.1 Computational Cost

The computational cost of an algorithm is the amount of resources it takes to perform this algo-
rithm on a computer. For simplicity here we just count the number of �oating point operations
(additions, subtractions, multiplications, divisions) performed during one run of the algorithm,
together with a count of the number of square roots taken; on one occasion we also count the
number of comparisons between real numbers. A more detailed analysis would also take factors
like memory usage into account.

De�nition 4.1. The cost of an algorithm is

C(n) = number of additions, subtractions, multiplications, divisions and square roots

where n is the size of the input data (e.g. the number of equations etc.).

The following de�nition provides the notation we will use to describe the asyptotic compu-
tation cost of an algorithm, this is the behaviour of the cost C(n) for n → ∞. (In the case of
the notation O it is closely related to the notation used in De�nition 3.1 from the last chapter,
except that there we consider the order of magnitude of small quantities. Here our concern with
cost leads to consideration of the order of magnitude of large quantities. However, the de�nitions
below can be adapted to the case x→ 0 and we will sometimes use this without comment.)

De�nition 4.2. For f, g : N→ N or f, g : R+ → R+ we write

g(x) = O
(
f(x)

)
if lim sup

x→∞

g(x)
f(x)

<∞,

g(x) = Ω
(
f(x)

)
if lim inf

x→∞

g(x)
f(x)

> 0,

g(x) = Θ
(
f(x)

)
if g(x) = Ω(f(x)) and g(x) = O(f(x)),

g(x) ∼ f(x) if lim
x→∞

g(x)
f(x)

= 1.

Example. From the de�nition we can see that the property g(x) ∼ f(x) implies g(x) = Θ
(
f(x)

)
.

Example. Using this notation we can write 5n2 + 2n − 3 ∼ 5n2 = Θ(n2), n2 = O(n3) and
n2 = Ω(n).
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Algorithm (standard inner product algorithm).
input: x, y ∈ Cn
output: s = 〈x, y〉
1: s = x̄1y1

2: for i = 2, . . . , n do
3: s = s+ x̄iyi
4: end for
5: return s

Theorem 4.3. The standard inner-product algorithm on Cn has computational cost C(n) =
Θ(n). Any algorithm for the inner product has C(n) = Ω(n).

Proof. The standard inner-product algorithm above has n multiplications and n − 1 additions,
i.e. C(n) = 2n− 1 = Θ(n). Sketch of the proof for C(n) = Ω(n): since each of the products xiyi
is �independent� of the others, we have to calculate all n of them.

Remark. Giving a real proof for the lower bound in the above theorem would require a detailed
model about what an algorithm actually is. One would for example need to be able to work in
a framework where �guessing� the result in just one operation and returning it is not a proper
algorithm. We avoid these di�culties here by only giving �sketches� for lower bounds.

Algorithm (standard matrix-vector multiplication).
input: A ∈ Cm×n, x ∈ Cn
output: y = Ax ∈ Cm
let a∗1, . . . , a

∗
m denote the rows of A.

1: for i = 1, . . . ,m do
2: let yi = 〈ai, x〉 using the standard inner product algorithm
3: end for
4: return y

Theorem 4.4. The computational complexity of the standard method for Cn×n-matrix-vector
multiplication satis�es C(n) = Θ(n2). Any method has C(n) = Ω(n).

Proof. See Exercise 4-2.

Algorithm (standard matrix-matrix multiplication).
input: A ∈ Cl×m with rows a∗1, . . . , a

∗
l , B ∈ Cm×n with columns b1, . . . , bn

output: C = AB ∈ Cl×n

1: for i = 1, . . . , l do
2: for j = 1, . . . , n do
3: let cij = 〈ai, bj〉 using the standard inner product algorithm
4: end for
5: end for
6: return C

Theorem 4.5. The standard method for Cn×n-matrix-matrix multiplication satis�es C(n) =
Θ(n3). Any method has C(n) = Ω(n2).

Proof. We have to calculate n2 inner products. Thus the asymptotic computational cost is
C(n) = n2Θ(n) = Θ(n3). Sketch for the lower bound: we have to calculate n2 entries of the
resulting matrix and thus C(n) ≥ n2.
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4.2 Matrix-Matrix Multiplication

In Theorem 4.5 there is a gap between the order Θ(n3) of the standard method for multiplying
matrices and the lower bound Ω(n2). The purpose of this section is to show that there are
actually algorithms with an asymptotic order which is better than Θ(n3).

For A,B ∈ Cn×n, n even and D = AB write

A =
(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, D =

(
D11 D12

D21 D22

)
where Aij , Bij , Dij ∈ Cn/2×n/2. Then we have

D11 = A11B11 +A12B21

D12 = A11B12 +A12B22

D21 = A21B11 +A22B21

D22 = A21B12 +A22B22.

The above method calculates the product of two n × n-matrices using eight multiplications
of (n/2) × (n/2)-matrices. Using this idea recursively leads to an algorithm for n × n matrix
multplication which builds the answer from the multplication of small matrices. The cost then
satis�es

C(n) = 8C(n/2) + n2

with the n2 contribution coming from the 4 additions of (n/2) × (n/2) matrices. Exercise 4-4
shows that this leads to a cost of Θ(n3) and is thus no better than the standard algorithm.

There is, however, another way to calculate the entries of the matrix D, which is algebraically
more complicated, but, crucially, only uses seven multiplications of (n/2) × (n/2)-matrices. It
will transpire that this fact can be utilised to get an asymptotically faster method of multiplying
matrices. Using

P1 = (A11 +A22)(B11 +B22)
P2 = (A21 +A22)B11

P3 = A11(B12 −B22)
P4 = A22(B21 −B11)
P5 = (A11 +A12)B22

P6 = (A21 −A11)(B11 +B12)
P7 = (A12 −A22)(B21 +B22)

we can write

D11 = P1 + P4 − P5 + P7

D12 = P3 + P5

D21 = P2 + P4

D22 = P1 + P3 − P2 + P6.

Algorithm (Strassen Multiplication).
input: A,B ∈ Cn×n with n = 2k for some k ∈ N0

output: D = AB ∈ Cn×n

1: if n = 1 then
2: return AB
3: else
4: calculate P1, . . . , P7 (using recursion)
5: calculate D11, D12, D21 and D22

6: return D
7: end if
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Remark. Recursive algorithms of this kind are called divide and conquer algorithms.

Using the Strassen-multiplication we can calculate D with 7 multiplications of n2 ×
n
2 -matrices

and 18 additions of n2 ×
n
2 -matrices. Thus we �nd

C(n) = 7C(n/2) + 18n2/4.

Lemma 4.6. The Strassen-multiplication has computational cost C(2k) = 7 · 7k − 6 · 4k for all
k ∈ N0.

Proof. For k = 0 we get C(20) = C(1) = 1.
Assume the claim is true for k ∈ N0. Then

C(2k+1) = 7C(2k) + 18 (2k)2

= 7(7 · 7k − 6 · 4k) + 18 · 4k

= 7 · 7k+1 − (7 · 6− 18)4k

= 7 · 7k+1 − 6 · 4k+1.

Now the claim follows by induction.

Theorem 4.7 (Strassen Multiplication). Using the Strassen-algorithm it is possible to con-
struct an algorithm for matrix-matrix multiplication with asymptotic computational cost C(n) =
Θ(nlog2 7).

Proof. We �rst prove the theorem for n = 2k, k ∈ N0. Then we have

7k = 2log2(7k) = 2k log2 7 = (2k)log2 7 = nlog2 7

and
4k = (2k)2 = n2.

Using the lemma we get

C(n) = 7 · 7k − 6 · 4k = 7nlog2 7 − 6 · n2 = Θ(nlog2 7).

This �nishes the proof.
If n is not a power of 2 then we argue as follows. We can extend the matrices: choose k ∈ N0

with 2k ≥ n > 2k−1 and de�ne Ã, B̃ ∈ C2k×2k

by

Ã =
(
A 012

021 022

)
, B̃ =

(
B 012

021 022

)
where 012 ∈ Cn×(2k−n), 021 ∈ C(2k−n)×n and 022 ∈ C(2k−n)×(2k−n) are zero-matrices of appro-
priate size. The product of Ã and B̃ may again be written in block form:

ÃB̃ =
(
AB 012

021 022

)
Thus we can �nd the product of the n×n-matrices A and B by multiplying the 2k×2k-matrices
Ã and B̃ with the Strassen-algorithm. Since we have n ≤ 2k ≤ 2n, the extended matrices are at
most double the size of the original ones, and because (2n)α = Θ(nα) for every α > 0 the result
for n = 2k implies C(n) = Θ(nlog2 7) as required.

Remark. By ideas similar to (but more involved than) those used by Strassen it is possible to
construct an algorithm which multiplies matrices in O(n2.376...). It remains an open question
whether the exponent can be made arbitrarily close to 2.
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Often the �rst method encountered for matrix inversion is Cramer's rule:

A−1 =
adj(A)
det(A)

.

Using the naive way to calculate det(A) takes Θ(n!) operations, and so for Cramer's rule we
would get asymptotic computational cost

C(n) = Θ(n!) = Θ(e−n/2nn).

Although of theoretical importance, this is a totally ine�cient method to invert a matrix. The
next result indicates why.

Theorem 4.8 (Complexity of Matrix Inversion). If there is a method to multiply n×n-matrices
with asymptotic computational cost O(nα) for some α ≥ 2, then it is also possible to invert
n× n-matrices with cost O(nα).

Proof. Let A ∈ Cn×n be invertible. The proof consists of three steps.
1) As in the previous theorem we can restrict ourselves to the case n = 2k for some k ∈ N0.

If n is not of this form we extend the matrix: choose k ∈ N0 with 2k ≥ n > 2k−1 and de�ne the
matrix Ã ∈ C2k×2k

by

Ã =
(
A 012

021 I22

)
where 012 ∈ Cn×(2k−n) and 021 ∈ C(2k−n)×n are zero-matrices and I22 is the (2k−n)× (2k−n)-
identity matrix. Then the inverse of this matrix is

Ã−1 =
(
A−1 012

021 I22

)
and we can invert A by inverting the 2k×2k-matrix Ã. Since Θ

(
(2n)α

)
= Θ

(
nα
)
the asymptotic

cost is unchanged.
2) Since A is invertible we have

x∗(A∗A)x = (Ax)∗Ax = ‖Ax‖22 > 0

for every x 6= 0 and thus A∗A is positive de�nite and therefore invertible. We can write

A−1 = (A∗A)−1A∗.

This allows us to invert A with cost C(n) = D(n) + O(nα) where D is the cost of inverting a
Hermitian, positive de�nite matrix and O(nα) is the cost for matrix-matrix multiplication. So
we can restrict ourselves to the case of Hermitian, positive de�nite matrices.

3) To determine the cost function D let B be Hermitian and positive de�nite:

B =
(
B11 B12

B∗12 B22

)
where the Bjk are

n
2 ×

n
2 -matrices. Let S = B22−B∗12B

−1
11 B12, known as the Schur complement.

A direct calculation shows that

B−1 =
(
B−1

11 +B−1
11 B12S

−1B∗12B
−1
11 −B−1

11 B12S
−1

−S−1B∗12B
−1
11 S−1

)
.

From exercise 4-3 we know that the matrices B11 and S are invertible.
This method to calculate B−1 needs 2 inversions of n

2 ×
n
2 -matrices (namely of B11 and of

S), a products of n2 ×
n
2 -matrices and b sums/subtractions of n2 ×

n
2 -matrices where a and b are

independent of n. This shows that

D(n) ≤ 2D(n/2) +O(nα) +O(n2)
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where O(nα) is the cost for the multiplications and O(n2) is the cost for the additions and
subtractions.

From Theorem 4.5 we already know α ≥ 2, so we can simplify the above estimate to

D(n) ≤ 2D(n/2) + cnα

for some constant c > 0. With an induction argument (see Exercise 4-5 below) one can conclude

D(2k) ≤ c

1− 21−α (2k)α

and thus we get
D(2k) = O

(
(2k)α

)
for k →∞. This �nishes the proof.

4.3 Fast Fourier Transform

The previous section shows that the inner-product based algorithm for matrix-matrix multipli-
cation can be substantially improved by use of a recursive divide and conquer approach. We now
attempt a similar improvement of matrix-vector multiplication, over the inner-product based al-
gorithm. However, in contrast to the matrix-matrix case, the idea we present here works only for
a restricted class of matrices � the discrete Fourier transform matrices. However other, similar,
ideas have also been developed for other discrete transforms. The technique we present here is
prototypical of a whole range of results available for matrix-vector multiplications of structured
matrices.

As an abbreviation write
ωn = e2πi/n

and de�ne the vectors ϕl ∈ Cn for l = 0, . . . , n− 1 by

ϕl =
1√
n

(
(e−2πil/n)0, (e−2πil/n)1, . . . , (e−2πil/n)n−1

)
=

1√
n

(
1, ω−ln , ω−2l

n , . . . , ω−(n−1)l
n

)
.

The following lemma shows that these vectors form a basis of Cn.

Lemma 4.9. 〈ϕl, ϕm〉 = δlm.

Proof.

〈ϕl, ϕm〉 =
1
n

n−1∑
j=0

ω(l−m)j
n .

If l = m, clearly 〈ϕl, ϕm〉 = 1. If l 6= m the geometric sum gives

1
n

ω
(l−m)n
n − 1

ω
(l−m)
n − 1

.

But ω
(l−m)n
n = e2πi(l−m) = 1 implying 〈ϕl, ϕn〉 = 0.

Hence the {ϕl}n−1
l=0 form an orthonormal basis for Cn. Thus any vector u ∈ Cn can be

expanded as

u =
n−1∑
l=0

alϕl,

where u, ϕl ∈ Cn and the al ∈ C.

48



The al can be found using orthogonality:

〈ϕm, u〉 =
n−1∑
l=0

al〈ϕm, ϕl〉 =
n−1∑
l=0

alδml = am.

Thus am = 〈ϕm, u〉.
Writing this out, with ωn denoted by ω for simplicity, gives

a0

a1

...

...
an−1

 =
1√
n


1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
. . .

1 ωn−1 ω2(n−1) . . . ω(n−1)2


︸ ︷︷ ︸

:=An

u
 .

Thus to expand arbitrary u in the basis {ϕk} we need to be able to perform matrix vector
multiplication by An ∈ Cn×n.

Theorem 4.10 (Complexity of FFT Matrix-Vector Multiply). Let n = 2k. Matrix-vector mul-
tiplication by An ∈ Cn×n can be performed in O(n log n) time.

Proof. We let
Fk =

√
nAn with n = 2k.

Note that Fk−1 ∈ Cn/2×n/2 and is built from ωn/2. We prove that multiplication by Fk can be

e�ected in O(k2k) time, which gives the desired result.
Let

x = (x0, x1, . . . , xn−1)T ∈ C2k

xe = (x0, x2, . . . , xn−2)T ∈ C2k−1

xo = (x1, x3, . . . , xn−1)T ∈ C2k−1
.

Knowledge of xo, xe gives x. Let

y = Fkx, y∗ = ((yt)∗, (yb)∗)∗.

Then, for j = 0, . . . , 2k − 1,

yj =
2k−1∑
l=0

ωjl
2kxl

=
2k−1−1∑
l=0

ω2jl
2k x2l +

2k−1−1∑
l=0

ω
j(2l+1)

2k x2l+1.

But ω2jl
2k = e2πi(2jl)/2k

= e2πi(jl)/2k−1
= ωjl

2k−1 , and so ω
j(2l+1)

2k = ωj
2k ω

2jl
2k = ωj

2k ω
jl
2k−1 . Hence,

yj =
2k−1−1∑
l=0

ωjl
2k−1 x

e
l + ωj

2k

2k−1−1∑
l=0

ωjl
2k−1x

o
l .

Now ωjlM = ω
(j+M)l
M and ωj2M = −ωj+M2M , and so

yj =
2k−1−1∑
l=0

ωjl
2k−1x

e
l + ωj

2k

2k−1−1∑
l=0

ωjl
2k−1x

o
l , j = 0, . . . , 2k−1 − 1

y2k−1+j =
2k−1−1∑
l=0

ωjl
2k−1x

e
l − ω

j
2k

2k−1−1∑
l=0

ωjl
2k−1x

o
l , j = 0, . . . , 2k−1 − 1.
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Then, in matrix notation,

yt =Fk−1x
e +DFk−1x

o = ye +Dyo

yb =Fk−1x
e −DFk−1x

o = ye −Dyo.

where
D = diag{ω0

2k , ω
1
2k , . . . , ω

2k−1−1
2k }.

Thus, if ye = Fk−1x
e and yo = Fk−1x

o are known, then y is found through O(2k) multipli-
cations and additions (since D is diagonal). If Lk = C(2k), C(n) being cost of multiplication by
An, then

Lk ≤ 2Lk−1 + a2k.

For induction, assume Lk ≤ (ak + L0)2k. For the inductive step l − 1 7→ l assume Ll−1 ≤
(a(l − 1) + L0)2l−1, then

Ll ≤ (a(l − 1) + L0)2l + a2l = (al + L0)2l,

completing the proof.

4.4 Bidiagonal and Hessenberg Forms

We conclude with the statement of a pair of matrix factorization results. Their importance is
intricately bound up with the complexity of the algorithms to e�ect them. It is for this reason
that they appear in this chapter.

Lemma 4.11. For any A ∈ Cn×n there exist unitary U, V and upper bidiagonal B such that

A = UBV ∗.

Furthermore this factorization can be achieved in O(n3) operations.

This result may be proved by means of Householder re�ections, which are introduced in
Chapter 5. Similar techniques enable proof of the second result.

Lemma 4.12. For any A ∈ Cn×n there exists unitary Z and upper Hessenberg T such that

A = ZTZ∗.

Furthermore this factorization can be achieved in O(n3) operations.

If we remove the stipulation that the factorizations be achieved in O(n3) then, by using the
SVD and the Schur factorisation respectively, we may obtain the desired results; indeed B is
then diagonal and T upper triangular. However, both the SVD and the Schur factorizations
reveal eigenvales (of ATA and A respectively). Hence they cannot be achieved, for arbitary n, in
a �nite number of arithmetic operations (see Chapter 8). The point, then, of these two lemmas,
is that the factorizations can be achieved at O(n3) cost. The �rst result may be proved by means
of Householder re�ections, which are introduced in Chapter 5. Similar techniques enable proof
of the second result.
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Exercises

Exercise 4-1. Let (i) f(n) = n2
(
1 + sin(n)

)
and (ii) f(n) = n+ n2. In each case, which of the

following are true:

• f(n) = O(1);

• f(n) = O(n);

• f(n) = O(n2);

• f(n) = Ω(1);

• f(n) = Ω(n);

• f(n) = Θ(n2).

Exercise 4-2. Show that the standard method for matrix-vector multiplication has asymptotic
computational cost C(n) = Θ(n2).

Exercise 4-3. Show that the matrices S and B11 in the proof of Theorem 4.8 are invertible.

Exercise 4-4. Prove that if C(n) = 8C(n/2) + Θ(n2) then C(n) = Θ(n3). This shows that a
divide and conquer approach to matrix multiplication which requires 8 matrix multiplications of
the smaller sub-matrices cannot beat the complexity of standard matrix-matrix multiplication;
in contrast, the Strassen method, using 7 multiplications, does.

Exercise 4-5. Show by induction that D(1) = 1 and

D(n) ≤ 2D(n/2) + cnα

for some constant c > 0 and α ≥ 2 implies

D(2k) ≤ c

1− 21−α (2k)α

for all k ∈ N0.

Exercise 4-6. Let A ∈ Rn×n where n = 2k. Noting that the LU factorisation of a matrix A
can be written as

A = LU =
(
L11 0
L21 L22

)(
U11 U12

0 U22

)
,

design a divide and conquer strategy which results in LU factorisation of A in O(na) operations
where O(na) is the cost of matrix multiplication.

Exercise 4-7. Prove Lemma 4.11.

Exercise 4-8. Prove Lemma 4.12.
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Chapter 5

Systems of Linear Equations

In this chapter we analyse algorithms for (SLE): given A ∈ Cn×n and b ∈ Cn, �nd an x ∈ Cn
such that Ax = b.

We present several methods to solve this problem. The common idea is to factorise the matrix
A into simpler matrices M and N as A = MN and to solve �rst the system My = b and then
Nx = y. The result is a vector x with Ax = MNx = My = b and thus we have solved (SLE).
In each section of the chapter we present a method, discuss its computational complexity, and
study its backward error properties.

5.1 Gaussian Elimination

Gaussian elimination is the most commonly used method to solve systems of linear equations.
The method is based on a systemisation of the elimination procedure used to solve simultaneous
linear equations by hand. The mathematical background of the algorithm is the LU factorisation
described in Theorems 2.21 and 2.22.

The Method

Under the conditions of Theorem 2.21 the matrix A can be converted into upper triangular shape
by multiplying lower triangular matrices from the left. We introduce the subsequent theoretical
developments with an example.

Example. Consider the matrix

A =

2 1 1
4 3 3
8 7 9

 .

Then we can create zeros in the �rst column below the diagonal by subtracting multiples of the
�rst row from the other rows. In matrix notation this can be written as

L1A =

 1
−2 1
−4 1

 ·
2 1 1

4 3 3
8 7 9

 =

2 1 1
0 1 1
0 3 5

 .

Repeating this for the second column gives

L2L1A =

1
1
−3 1

 ·
2 1 1

0 1 1
0 3 5

 =

2 1 1
0 1 1
0 0 2

 .

We have found lower triangular matrices L1 and L2 and an upper triangular matrix U with
A = (L2L1)−1U . It turns out that (L2L1)−1 itself is unit lower triangular with inverse that is
easily calculable. Hence we have found an LU factorisation of A during the process of elimination.
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The ideas in this example generalise to arbitrary dimension. The following lemma helps to
calculate (Lk · · ·L2L1)−1 = L−1

1 L−1
2 · · ·L

−1
k in general.

Lemma 5.1. a) Let L = (`ij) be unit lower triangular with non-zero entries below the diagonal
only in column k. Then L−1 is also unit lower triangular with non-zero entries below the diagonal
only in column k and we have (L−1)ik = −`ik for all i > k.

b) Let A = (aij) and B = (bij) be unit lower triangular n × n matrices where A has non-
zero entries below the diagonal only in columns 1, . . . , k and B has non-zero entries below the
diagonal only in columns k + 1, . . . , n. Then AB is unit lower triangular with (AB)ij = aij for
j ∈ {1, . . . , k} and (AB)ij = bij for j ∈ {k + 1, . . . , n}.

Proof. a) Multiplying L with the suggested inverse gives the identity. b) Direct calculation.

Example. For the matrices L1 and L2 from the previous example we get

(L2L1)−1 = L−1
1 L−1

2 =

1
2 1
4 1

 ·
1

1
3 1

 =

1
2 1
4 3 1

 .

Thus we have found the LU factorisation2 1 1
4 3 3
8 7 9

 =

1
2 1
4 3 1

 ·
2 1 1

1 1
2

 .

Recall the notation for principal submatrix from De�nition 2.20. The technique to convert A
into an upper triangular matrix by multiplying lower triangular matrices leads to the following
algorithm:

Algorithm LU (LU factorisation).
input: A ∈ Cn×n with det(Aj) 6= 0 for j = 1, . . . , n
output: L,U ∈ Cn×n where A = LU is the LU factorisation of A

1: L = I, U = A
2: for k = 1, . . . , n− 1 do
3: for j = k + 1, . . . , n do
4: ljk = ujk/ukk
5: (uj,k, . . . , uj,n) = (uj,k, . . . , uj,n)− lj,k(uk,k, . . . , uk,n)
6: end for
7: end for

Remarks. Line 5 of the algorithm subtracts a multiple of row k from row j, causing ujk = 0
without changing columns 1, . . . , k−1. This corresponds to multiplication with a lower triangular
matrix Lk as in the example above. Thus after the loop ending in line 6 is �nished, the current
value of the matrix U is Lk · · ·L1A and it has zeros below the diagonal in columns 1, . . . , k.

Since the principal sub-matrices Aj are non-singular and the matrices Lj are unit triangular

we get, for Ã = Lk · · ·L1A,
det Ãk+1 = detAk+1 6= 0

and thus, since Ã has zeros below the diagonal in column k, we must have ukk 6= 0 in line 4.
Lemma 5.1 shows that the algorithm calculates the correct entry ljk for the matrix L =
(Ln · · ·L1)−1.

The last missing building block for the Gaussian elimination method is the following algorithm
to solve systems of linear equations when the coe�cient matrix is triangular.

Algorithm BS (back substitution).
input: U ∈ Cn×n non-singular, upper triangular and b ∈ Cn
output: x ∈ Cn with Ux = b
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1: for j = n, . . . , 1 do

2: xj =
1
ujj

(
bj −

n∑
k=j+1

ujkxk

)
3: end for

Remarks.

1. Since U is triangular we get

(Ux)i =
n∑
j=i

uijxj = uii

( 1
uii

(
bi −

n∑
k=i+1

uikxk
))

+
n∑

j=i+1

uijxj = bi.

Thus the algorithm is correct.

2. The corresponding algorithm to solve Lx = b where L is a lower triangular matrix is called
forward substitution.

Combining all our preparations we get the Gaussian elimination algorithm to solve the prob-
lem (SLE):

Algorithm GE (Gaussian elimination).
input: A ∈ Cn×n with det(Aj) 6= 0 for j = 1, . . . , n and b ∈ Cn
output: x ∈ Cn with Ax = b

1: �nd the LU factorisation of A
2: solve Ly = b using forward substitution
3: solve Ux = y using back substitution

Remarks.

1. The result of this algorithm is an x ∈ Cn with Ax = LUx = Ly = b and thus the algorithm
gives the correct result.

2. The vector y may be calculated at the same time as the LU factorisation of A, by adding
b as an additional column in A.

Computational Complexity

Lemma 5.2. The LU factorisation algorithm has computational cost

C(n) =
2
3
n3 +

1
2
n2 − 7

6
n.

Proof. We have to count the number of �oating point operations in the LU factorisation algo-
rithm. Line 5 requires (n− k+ 1) multiplications and (n− k+ 1) subtractions, i.e. 2(n− k+ 1)
operations. Line 4 contributes one division. Thus the loop starting at line 3 needs (n− k)

(
1 +

2(n− k + 1)
)
operations. Considering the outer loop the total number of operations is

C(n) =
n−1∑
k=1

(n− k)
(
1 + 2(n− k + 1)

)
=
n−1∑
k=1

2(n− k)2 + 3(n− k) = 2
n−1∑
l=1

l2 + 3
n−1∑
l=1

l.

The claim follows now by induction.

Remark. Using the ∼-notation the claim of the lemma becomes C(n) ∼ 2
3n

3.

Lemma 5.3. Forward substitution and back substitution have computational cost C(n) ∼ n2.
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Proof. Calculating xj in the back substitution algorithm needs 2(n − j) + 1 operations. Thus
the total cost is

C(n) =
n∑
j=1

(
2(n− j) + 1

)
= 2

n−1∑
k=0

k + n = n(n− 1) + n = n2.

A similar argument applies to the situation of forward substitution.

Theorem 5.4 (Computational Complexity of Gaussian Elimination). The asymptotic compu-
tational cost of the GE algorithm is of order

C(n) ∼ 2
3
n3.

Proof. This is an immediate consequence of the previous two lemmas.

Error Analysis

The following theorem is proved by using the Assumptions (A1) and (A2) concerning computer
arithmetic. The proof is somewhat involved and we omit it here. We include the statement,
however, because it is an important building block in the overall understanding of backward
error analysis for Gaussian elimination. We use the notation | · | for matrices, introduced just
prior to Lemma 1.34.

Theorem 5.5. The forward and back substitution algorithms are backward stable: the computed
solution x̂ of a triangular system of equations Tx = b satis�es (T+∆T )x̂ = b for some triangular
matrix ∆T ∈ Cn×n with, for εm su�ciently small,

|∆T | ≤ nεm

1− nεm
|T |.

Note that this theorem implies that ∆T has the same triangular structure as T itself. The
result shows that, for nεm su�ciently small, there is a constant c independent of n such that,
by Lemma 1.34,

‖∆T‖∞ ≤ cnεm‖T‖∞.

Applying this result to backsubstitution we �nd that the computed solution of Ux = y, x̂, solves
(U + ∆U)x̂ = y and that

‖∆U‖∞ ≤ cnεm‖U‖∞.

Using Proposition 3.5 about the conditioning of (SLE) we get an upper bound on the error in
the computed result of back substitution:

‖x̂− x‖∞
‖x‖∞

≤ cκ(U)nεm

for κ(U)nεm su�ciently small.
Thus the backward substitution step of Gaussian elimination is numerically stable and does

not introduces large errors, provided κ(U)nεm remains small. The same holds for forward
substitution. The LU factorisation algorithm, however, is not backward stable. To explain this
fact we describe two more results from backward error analysis.

Theorem 5.6. The computed LU -factors in a Gaussian elimination of A ∈ Rn×n, L̂ and Û ,
satisfy

L̂Û = A+ ∆A

where, for εm su�ciently small,

|∆A| ≤ nεm

1− nεm
|L̂||Û |.
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The proof of this result is similar to that of the previous theorem, and we omit it too.
Combining the two previous theorems gives the following backward error analysis result for the
solution of (SLE) by Gaussian elimnation.

Theorem 5.7. Let x̂ be the approximate solution of (SLE) as computed by algorithm GE. Then

(A+ ∆A)x̂ = b

where, for εm su�ciently small,

|∆A| ≤ 3nεm

1− 3nεm
|L̂||Û |.

Proof. See Exercise 5-10.

This would give a backward stability result if it were possible to bound ‖|L̂||Û |‖ in terms of
‖A‖. Unfortunately this is not possible as we illustrate in the following example.

Example. [E�ect of Rounding] Let

A =
(
ε 1
1 1

)
for some ε > 0. Then A has a LU factorisation A = LU with

L =
(

1 0
ε−1 1

)
, U =

(
ε 1
0 1− ε−1

)
.

Now assume ε� 1. Then ε−1 is a huge number and the representation of these matrices stored
in a computer will be rounded. The matrices might be represented as

L̂ =
(

1 0
ε−1 1

)
, Û =

(
ε 1
0 −ε−1

)
,

which is compatible with Assumption (A1) on rounding errors. We have L̂ = L and Û ≈ U .
But multiplying the two rounded matrices gives

L̂Û =
(
ε 1
1 0

)
= A+

(
0 0
0 −1

)
︸ ︷︷ ︸

∆A

.

A small rounding error leads to a large backward error ∆A. The example shows that for Gaussian
elimination a backward error analysis will, in general, lead to the conclusion that the perturbed
problem is not close to the original one: the algorithm is not backward stable.

Discussing the result in terms of the previous theorem, note that ‖A‖∞ = 2 and that
‖|L̂||Û |‖∞ = Θ(ε−1). Hence it is not possible to bound ‖|L̂||Û |‖ in terms of ‖A‖, indepen-
dently of ε.

Note that this problem is not related to the conditioning of the matrix A. We have

A−1 = (1− ε)−1

(
−1 1
1 −ε

)
and thus κ(A) = ‖A‖∞‖A−1‖∞ ≈ 4 for small ε > 0 and the matrix A is well conditioned.

5.2 Gaussian Elimination with Partial Pivoting

Because of the instability illustrated in the previous example, the classical Gaussian elimination
method is not used in black box numerical software for (SLE). However, the continuation of the
example illustrates the resolution: permutations can cure this problem.
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Example. [E�ect of Rounding Continued] Let

P =
(

0 1
1 0

)
, and A′ = PA =

(
1 1
ε 1

)
,

then

L′ =
(

1 0
ε 1

)
U ′ =

(
1 1
0 1− ε

)
L̂′ =

(
1 0
ε 1

)
Û ′ =

(
1 1
0 1

)
.

Thus

L̂′Û ′ =
(

1 1
ε 1 + ε

)
= A′ +

(
0 0
0 ε

)
︸ ︷︷ ︸

∆A′

,

and the backward error ∆A′ is small.

Thus permuting is important. There are two primary methods of permutation:

GEPP Swap rows only to maximise |a(l)
ll | over all choices from l, . . . , n: (n− l + 1) of them.

GECP Swap rows and columns to maximise |a(l)
ll | over all choices from l, . . . , n: (n− l+ 1)2 of

them.

Here GEPP denotes Gaussian Elimination with partial pivoting whilst GECP denotes Gaus-
sian Elimination with complete pivoting. GEPP is the most widely used in practice and so we
devote most of our analysis to this algorithm.

The Method

The instability of Gaussian elimination highlighted above is caused by the fact that we divide by
the tiny number ukk = ε in step 4 of the LU factorisation algorithm. Motivated by the resolution
in the example above, we will avoid this problem in the improved version of the algorithm by
rearranging rows k, . . . , n by multiplication with a permutation matrix at the beginning of the
kth iteration in order to maximise the element ukk. The following argument shows that the
modi�ed algorithm still works correctly.

We want to calculate
U = Ln−1Pn−1 · · ·L1P1A.

Multiplying the permutation matrix Pk from the left exchanges rows k and ik where ik is chosen
from {k, . . . , n} to maximise the element uikk. We can rewrite this as

U = L′n−1 · · ·L′1 Pn−1 · · ·P1A

where L′n−1 = Ln−1 and

L′k = Pn−1 · · ·Pk+1LkP
−1
k+1 · · ·P

−1
n−1

for k = 1, . . . , n−2. Since Pn−1 · · ·Pk+1 exchanges rows k+1, . . . , n and P−1
k+1 · · ·P

−1
n−1 performs

the corresponding permutation on the columns k + 1, . . . , n the shape of L′k is the same as the
shape of Lk: it is unit lower triangular and the only non-vanishing entries below the diagonal
are in column k. Hence we can still use Lemma 5.1 to calculate L = (L′n−1 · · ·L′1)−1. The above
arguments lead to the following algorithm.

Algorithm LUPP (LU factorisation with partial pivoting).
input: A ∈ Cn×n non-singular
output: L,U, P ∈ Cn×n where PA = LU with L unit lower triangular,

U non-singular upper triangular and P a permutation matrix
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1: U = A, L = I, P = I
2: for k = 1, . . . , n− 1 do
3: choose i ∈ {k, . . . , n} which maximises |uik|
4: exchange row (uk,k, . . . , uk,n) with (ui,k, . . . , ui,n)
5: exchange row (lk,1, . . . , lk,k−1) with (li,1, . . . , li,k−1)
6: exchange row (pk,1, . . . , pk,n) with (pi,1, . . . , pi,n)
7: for j = k + 1, . . . , n do
8: ljk = ujk/ukk
9: (uj,k, . . . , uj,n) = (uj,k, . . . , uj,n)− lj,k(uk,k, . . . , uk,n)

10: end for
11: end for

Remark. One can show that, whenever A is non-singular, the element ukk is always non-zero
after the row-exchange. Thus we do no longer require the condition det(Aj) 6= 0 to avoid a
division by zero here.

Lemma 5.8. The resulting matrices L and Lk satisfy ‖L‖∞ ≤ n and ‖Lk‖∞ ≤ 2.

Proof. Each matrix Lk has entries |(Lk)ij | ≤ 1 for all i, j ∈ {1, . . . , n}. Consequently the same
is true of L. The result for ‖L‖∞ follows directly. Furthermore, as each row of Lk contains at
most two non-zero entries, we have ‖Lk‖∞ ≤ 2.

Gaussian elimination with partial pivoting now works as follows:

Algorithm GEPP (Gaussian elimination with partial pivoting).
input: A ∈ Cn×n non-singular, b ∈ Cn
output: x ∈ Cn with Ax = b

1: �nd PA = LU using algorithm LUPP
2: solve Ly = Pb using forward substitution
3: solve Ux = y using back substitution

Remarks.

1. The result of this algorithm is an x ∈ Cn with Ax = P−1LUx = P−1Ly = P−1Pb = b
and thus the algorithm is correct.

2. Again it is possible to compute y by appending b as an extra column in the matrix A.

Computational Complexity

The computational complexity is the same as for the LU algorithm given in Theorem 5.4. This
follows from the fact that we only added steps to exchange rows in the LU algorithm and such
exchanges do not incur computational cost in our model. If we assign unit cost to the comparisons
between number, made to maximise |uik| in step 3 of the algorithm, then this added additional
cost is of order Θ(n2); thus it can be neglected for a Θ(n3) algorithm. For GECP the additional
cost is of order Θ(n3) and hence cannot be neglected.

Error Analysis

To derive a backward error analysis for GEPP is nontrivial. We limit ourselves to an heuristic
understanding of the analysis, based on the following two assumptions:

• The computed permutation matrix P̂ is the correct permutation P ;

• The computed L,U factors L̂, Û are well approximated by L,U .
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Then applying Theorem 5.7 to PA = P̂A we obtain a computed solution x̂ which satis�es

P (A+ ∆A)x̂ = Pb

where

‖∆A‖∞ ≤
3nεm

1− 3nεm
‖L̂‖∞‖Û‖∞.

To bound the right-hand side of this expression we use the following de�nition:

De�nition 5.9. De�ne gn(A), the growth factor for matrix A ∈ Cn×n, by

gn(A) =
‖U‖max

‖A‖max
. (5.1)

From this it follows, by Lemma 1.35, that

‖U‖∞ ≤ ngn(A)‖A‖∞.

We also have ‖L‖∞ ≤ n and hence, using the approximation L̂ ≈ L, Û ≈ U ,

‖∆A‖∞ .
3n3gn(A)εm

1− 3nεm
‖A‖∞. (5.2)

(Here . indicates that approximations have been made in deriving the inequality). To under-
stand the implications of this bound we study the behaviour of the growth factor in further
detail.

Lemma 5.10. The growth factor gn(A) satis�es gn(A) ≤ 2n−1 for every A ∈ Cn×n.

Proof. We have U = L′n−1 · · ·L′1PA. For any k ∈ {1, . . . , n − 1} and any matrix A ∈ Cn×n we
�nd

‖L′kA‖max = max
i,j

∣∣(L′kA)ij
∣∣

= max
i,j=1,...,n

∣∣ n∑
l=1

(L′k)ilalj
∣∣

≤ max
i=1,...,n

∣∣ n∑
l=1

(L′k)il
∣∣ max

i,j
|aij |

= ‖L′k‖∞‖A‖max

≤ 2‖A‖max

and thus by applying the matrices L′1, . . . L
′
n−1 in order we get, since ‖PA‖max = ‖A‖max,

‖U‖max ≤ 2n−1 maxi,j ‖A‖max. This completes the proof.

Placing this upper-bound on gn(A) in (5.2) shows a worryingly large n-dependence in the
backward error bound for GEPP:

‖∆A‖∞ .
3n32n−1εm

1− 3nεm
‖A‖∞.

Furthermore, the following example shows that the upper bound on gn(A) from the lemma can
be attained.

Example. Let

A =


1 1
−1 1 1
−1 −1 1 1
...

...
. . .

. . .
...

−1 −1 · · · −1 1

 ∈ Rn×n.
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Since all relevant elements have modulus 1 we do not need to use pivoting and LU factorisation
gives

U =



1 1
1 2

1 4
. . .

...
1 2n−2

2n−1


∈ Rn×n.

Thus for the matrix A as de�ned above we get

gn(A) =
‖U‖max

‖A‖max
= 2n−1.

Despite this worst case analysis, GEPP is widely used in practice; we outline why this is the
case.

Remarks.

1. The implied backward error analysis for GEPP given by (5.2) is indeed very weak: although
the algorithm is technically backward stable, for certain problems it is necessary that 2nεm

be small to ensure a small backward error.

2. The preceding analysis may also be carried out for the GECP algorithm and results in a
bound for the growth factor which scales like n

1
4 logn+ 1

2 ; whilst still faster than polynomial
in n, this bound is considerably slower than 2n. Thus GECP has, in a worst case analysis,
far better stability properties than GEPP.

3. If comparisons between numbers are assigned unit cost, then GECP is still an Θ(n3)
algorithm, but the constant is larger than for GEPP.

4. Practical experience, and some statistical analysis, has led to a belief that matrices resulting
in large backward error for GEPP do not arise commonly in practice. Thus the worst case
analysis is thought, typically, to be misleading.

5. For these reasons GEPP is commonly used in practice, because it is cheaper than GECP
if comparisons are assigned a unit computational cost, and because it appears to produce
reasonable backward error on most problems.

5.3 The QR Factorisation

The Householder QR factorisation is another method to solve (SLE). QR factorisation avoids the
poor dependence of the stability constant on n that arises for the LU factorisation with partial
pivoting. However the computation takes roughly twice the number of operations.

The Method

The following algorithm solves the problem (SLE) using the QR factorisation from Theorem 2.18.
In order to apply the algorithm we will need a numerically stable method to calculate the QR
factorisation. To avoid a minor technical complication, we restrict ourselves to the case of
real-valued matrices in this section.

Algorithm (solving (SLE) by QR factorisation).
input: A ∈ Rn×n non-singular, b ∈ Rn
output: x ∈ Rn with Ax = b

1: �nd the QR factorisation A = QR
2: calculate y = Q∗b
3: solve Rx = y using back substitution
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The result of this algorithm is an x ∈ Rn with Ax = QRx = Qy = QQ∗b = b and thus the
algorithm is correct. To calculate the QR factorisation we will use the following algorithm. We
present the full algorithm �rst and then analyse it to see how it works. The algorithm uses the
sign function, which is de�ned as follows.

sign(x) =

{
+1, if x ≥ 0, and
−1 else.

Algorithm QR (Householder QR factorisation).
input: A ∈ Rm×n with m ≥ n
output: Q ∈ Rm×m orthogonal, R ∈ Rm×n upper triangular with A = QR

1: Q = I, R = A
2: for k = 1, . . . , n do
3: u = (rkk, . . . , rmk) ∈ Rm−k+1

4: v̄ = sign(u1)‖u‖2e1 + u where e1 = (1, 0, . . . , 0) ∈ Rm−k+1

5: v = v̄/‖v̄‖2
6: Hk = (Im−k+1 − 2vv∗) ∈ R(m−k+1)×(m−k+1)

7: Qk =
(
Ik−1 0

0 Hk

)
8: R = Qk ·R
9: Q = Q ·Qk

10: end for

Remarks.

1. This method of calculating a QR factorisation has very desirable numerical stability prop-
erties.

2. The algorithm calculates matrices Qk with Qk = Q∗k for k = 1, . . . , n − 1 as well as
R = Qn−1 · · ·Q1A and Q = Q1 · · ·Qn−1.

3. We will see that Qk · · ·Q1A has zeros below the diagonal in columns 1, . . . , k and thus the
�nal result R = Qn−1 · · ·Q1A is upper triangular.

4. The only use we make of the matrix Q when solving (SLE) by QR factorisation is to
calculate Q∗b. Thus for solving (SLE) we can omit the explicit calculation of Q by replacing
line 9 of algorithm QR with the statement b = Qkb. The �nal result in the variable b will
then be

Qn−1 · · ·Q1b = (Q1 · · ·Qn−1)∗b = Q∗b.

Householder Re�ections

In step 8 of algorithm QR we calculate a product of the form

Qk ·
(
R11 R12

0 R22

)
=
(
R11 R12

0 HkR22

)
(5.3)

where R11 ∈ R(k−1)×(k−1) and Hk, R22 ∈ R(m−k+1)×(m−k+1). The purpose of this subsection is
to understand this step of the algorithm.

If Hk as calculated in step 6 of algorithm QR is applied to a vector x ∈ Rm−k+1 the result is

Hkx = x− 2vv∗x = x− 2v〈v, x〉.

Since the vector v〈v, x〉 is the projection of x onto v, the value x − v〈v, x〉 is the projection of
x onto the plane which is orthogonal to v and x − 2v〈v, x〉 is the re�ection of x at that plane.
Re�ecting twice at the same plane gives back the original vector and thus we �nd

H∗kHk = HkHk = I.
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This shows that the matrices Hk, and then also Qk, are orthogonal for every k ∈ {1, . . . , n− 1}.
The vector which de�nes the re�ection plane is either v̄ = u− ‖u‖2e1 or v̄ = u− (−‖u‖2e1),

depending on the sign of u1. The corresponding re�ection maps the vector u to Hku = ‖u‖2e1

or Hku = −‖u‖2e1 respectively. In either case the image is a multiple of e1 and since u is the
�rst column of the matrix block R22 the product HkR22 has zeros below the diagonal in the
�rst column. The �rst column of R22 is the kth column of R and thus QkR has zeros below
the diagonal in columns 1, . . . , k. For k = n − 1 we �nd that R = Qn−1 · · ·Q1A is an upper
triangular matrix as required.

Remarks.

1. The matrices Hk and sometimes also Qk are called Householder re�ections.

2. The choice of sign in the de�nition of u helps to increase the stability of the algorithm in
the cases u ≈ ‖u‖2e1 and u ≈ −‖u‖2e1. In the complex case, sign(x) will be replaced by
a complex number σ ∈ C with |σ| = 1.

Computational Complexity

We considered two variants of algorithm QR, either calculating the full matrix Q as formulated
in line 9 of the algorithm or only calculating Q∗b by replacing line 9 with the statement b = Qkb.
We handle the di�erent cases by �rst analysing the operation count for the algorithm with line 9
omitted.

Lemma 5.11. The computational cost C(m,n) for algorithm QR applied to an m × n-matrix
without calculating Q or Q∗b is asymptotically

C(m,n) ∼ 2mn2 − 2
3
n3 for m,n→∞ with m = Θ(n).

Proof. We count the number of operations for the individual steps of algorithm QR. From
equation (5.3) we can see that for calculating the product QkR in step 8 we only have to
calculate HkR22 = R22 − 2vv∗R22. Since v = v̄/‖v̄‖2 and ‖v̄‖2 =

√
v̄∗v̄ we can calculate this as

HkR22 = R22 −
v̄

v̄∗v̄/2
v̄∗R22.

Using this formula we get the following operations count:

• construction of v̄: 2(m− k + 1) + 1 operations (counting
√
· as 1).

• computing v̄∗R22: Since each of the n − k + 1 components of the matrix-vector prod-
uct v̄∗R22 needs m− k+ 1 multiplications and m− k additions, the computation of v̄∗R22

requires (n− k + 1)
(
(m− k + 1) + (m− k)

)
operations.

• Calculating v̄∗v̄/2 needs 2(m − k + 1) operations and dividing v̄ by the result requires
another (m− k + 1) divisions.

• Calculating (· · · )(v̄∗R22) from this needs (m− k + 1)(n− k + 1) multiplications.

• Calculating R22 − (· · · ) requires (m− k + 1)(n− k + 1) subtractions.

Thus the total operation count is

C(m,n) =
n∑
k=1

5(m− k + 1) + 1 + (n− k + 1)
(
4(m− k + 1)− 1

)
=

m∑
l=m−n+1

5l + 1 + (n−m+ l)(4l − 1)

= 2mn2 − 2
3
n3 + terms with at most two factors m,n

∼ 2mn2 − 2
3
n3
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for m,n→∞ with m = Θ(n).

If we need to calculate the full matrix Q we have to perform an (m − k + 1) × (m − k + 1)
matrix-matrix multiplication in step 9. Assuming that we use the standard matrix multiplication
algorithm this contributes asymptotic cost Θ(m3) and so the asymptotic cost of algorithm QR
will be increased by this step. But if we apply algorithm QR only to solve (SLE), we just have
to calculate Q∗b instead of Q. Algorithmically this is the same as appending the vector b as an
additional column to the matrix A. Thus the computational cost for this algorithm is C(m,n+1)
and since

2m(n+ 1)2 − 2
3

(n+ 1)3 ∼ 2mn2 − 2
3
n3

for m,n → ∞ with m = Θ(n) the asymptotic cost does not change. For solving (SLE) we also
have m = n and thus we �nd that the asymptotic computational cost of solving (SLE) using
Householder QR factorisation is

C(n) ∼ 2nn2 − 2
3
n3 =

4
3
n3 for n→∞.

This analysis shows that solving (SLE) using Householder QR factorisation requires asymp-
totically double the number of steps than algorithm GEPP does. This is the price we have to
pay for the better stability properties of the QR algorithm.

Error Analysis

The backward error analysis for Householder QR is best expressed in terms of the norms of
matrix columns. For any matrix D ∈ Rn×n we write dj to denote the jth column of D. A
similar convention for upper and lower case letters is used in what follows.

The �rst result concerns the form of the triangular factor in the HouseholderQR factorisation.

Theorem 5.12. Let R̂ denote the computed upper triangular factor in a Householder QR fac-
torisation of A ∈ Rn×n. Then there exists orthogonal Q ∈ Rn×n and constant c ∈ R+ such
that

A+ ∆A = QR̂

where, for εm su�ciently small,

‖∆aj‖2 ≤
cn2εm

1− cn2εm
‖aj‖2, j = 1, . . . , n.

This result can be used to show the following.

Theorem 5.13. Let x solve Ax = b and let x̂ be the solution computed through Householder
QR. Then

(A+ ∆A)x̂ = b+ ∆b,

where, for some constant c ∈ R+ and for εm su�ciently small,

‖∆aj‖2 ≤
cn2εm

1− cn2εm
‖aj‖2,

‖∆b‖2 ≤
cn2εm

1− cn2εm
‖b‖2.

This is a considerable improvement over the worst case analysis for GEPP. However, as we
have seen, the worst case analysis does not give a true picture of the stability of GEPP in
practice; furthermore, Householder QR costs twice as much as GEPP. Consequently GEPP is
favoured in practice.
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Exercises

Exercise 5-1. The purpose of this question is to illustrate some of the content of the chapter
by means of some Matlab experiments. We consider the linear system

Ax = b (5.4)

where A ∈ Rn×n, b ∈ Rn are given and x ∈ Rn is to be found. In Matlab we start by creating
a random matrix A and vector b. Type

>> A=randn(5)

>> b=randn(5,1)

These two commands will produce a random 5 × 5 matrix and 5-vector where each entry is
independent of all others and is distributed normally with mean 0 and variance 1. Now type

>> x=A\b

This x is the (computer approximation) to the solution of (5.4). To verify this type

>> r=A*x-b; rn=norm(r)

which will produce the norm of the residual r between Ax (with the computed x) and b. How
big is rn? What does this tell you?

Now we try and explain how Matlab solved (5.4). Type

>> [L,U,P]=lu(A)

and describe what special properties L,U and P have. In particular, what e�ect does P have
when applied to an arbitrary 5× 5 matrix? Why is P−1 = PT ? If you type

>> P*A

and then

>> L*U

you see that PA = LU (approximately � use norm to measure the residual). Thus, applying P
to (5.4), we see that x solves

LUx = Pb.

Thus
x = U−1L−1Pb.

What special features do U and L have which make this a good way to �nd x? (Think about
what is involved in solving an arbitrary linear system and compare it to what is involved if the
matrix to be inverted has the form of U or L).

The LU factorisation described above is what Matlab uses to solve (5.4) (unless A is sym-
metric with positive diagonal entries, in which case Cholesky factorisation is used). But an
alternative is to use the QR factorisation which we now outline. Type

>> [Q,R]=qr(A)

and then type
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>> rn=norm(Q*R-A)

noting that this shows that QR is a (approximate) factorisation of A. R has a property you
have seen on another matrix in this question (what is it?) and is hence easy to invert. What
about Q? Let us extract the columns from Q. Type

>> q1=Q(1:5,1); q2=Q(1:5,2); q3=Q(1:5,3); q4=Q(1:5,4); q5=Q(1:5,5)

What do these vectors q represent? Now, using the Matlab command dot(a,b), which calculates
dot products of vectors, experiment with the properties of inner-products amongst the q vectors.
What do you �nd? Why is Q easy to invert?

Using this QR factorisation it is possible to �nd x solving (5.4) as x = R−1Q−1b. Although
this method is not often used it has some nice mathematical properties which we will explain in
the lectures.

Exercise 5-2. In analogy to the back substitution algorithm formulate the forward substitution
algorithm to solve Ly = b where L ∈ Cn×n is a lower triangular, invertible matrix and b ∈ Cn
is a vector. Show that your algorithm computes the correct result and that it has asymptotic
computational cost of order Θ(n2).

Exercise 5-3. a) Find the LU factorisation of

A =
(

1 2
3 1

)
.

What is the growth factor gn(A) in this case? b) Find a QR factorisation of the same matrix,
using both Gram-Schmidt and Householder. c) Find the condition number of A in the ‖ · ‖∞,
‖ · ‖2 and ‖ · ‖1 norms.

Exercise 5-4. a) Let A = a⊗b. Find all eigenvalues and eigenvectors of A. When is A a normal
matrix? b) Let H ∈ Rn×n be a Householder re�ection. Show that H has a single eigenvalue at
−1 and an eigenvalue +1 of multiplicity (n− 1). What is the value of det(H)?

Exercise 5-5. Determine the asymptotic computational cost of algorithm QR when calculating
the full matrix Q.

Exercise 5-6. Write a Matlab algorithms to solve

Ux = y

Ly = b

where U ∈ Rn×n (resp. L ∈ Rn×n) is an upper (resp. lower) triangular matrix. Construct
examples U and y where you know the exact solution x (for some large n). Compute x̂ using
your algorithm and study the error

e =
‖x− x̂‖
‖x‖

,

discussing your results.
Now generate a random upper triangular U ∈ R50×50 with non-zero entries uniformly dis-

tributed in [−1, 1]. Let x = (1, . . . , 1)T ∈ R50 and compute y = Ux by use of Matlab's matrix
multiply. Solve Ux̂ = y (with the just computed y) using the algorithm you designed above and
compute the relative error

e =
‖x− x̂‖∞
‖x‖∞

.

Do this several hundred times and discuss the resulting statistics of e.

Exercise 5-7. Using the construction from Exercise 2-2 as the basis for an algorithm, and
making maximum use of symmetry, show that Cholesky factorisation of a symmetric positive-
de�nite matrix can be achieved in approximately half the �ops of standard Gaussian Elimination.
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Exercise 5-8. Let A be a symmetric positive de�nite matrix that is also strongly (row) di-
agonally dominant. Let gn(A) be the growth factor from (5.1). Show that when Gaussian
Elmination is applied to A we get gn(A) ≤ 1.

Exercise 5-9. Banded matrices arise frequently in discretisations of PDEs and it is thus im-
portant to understand them both from a theoretical and a practical point of view.

We consider here m×m tridiagonal matrices. These have the form
d1 c1
a2 d2 c2

. . .
. . .

. . .

am−1 dm−1 cm−1

am dm

 (5.5)

First of all it will be useful to be able to invert tridiagonal matrices. Consider solving

Ax = b, (5.6)

where A is de�ned by (5.5) and b is an m× 1 vector of the form b = [b1, b2, . . . , bm]T .
Given the coe�cients ai, di, ci of the tridiagonal matrix A and the right-hand side bi, the

solution xi of (5.6) may be found as follows.

Algorithm (TriDiagonal Solver).
input: the coe�cients ai, di, ci of the tridiagonal matrix A
output: x ∈ Rn

1: for k = 2, . . . ,m do
2: if dk−1 = 0 then
3: signal failure and stop
4: else
5: rm = ak

dk−1

6: end if
7: dk = dk − rm ∗ ck−1

8: bk = bk − rm ∗ bk−1

9: end for
10: if dn = 0 then
11: signal failure and stop
12: else
13: xm = bm

dm

14: end if
15: for k = m− 1, . . . , 1 do
16: xk = bk−ckxk+1

dk

17: end for

Note that this algorithm does not include any pivoting strategies. When and why is this
satisfactory?

Exercise 5-10. Prove Theorem 5.7 about the backward stability of algorithm GE.
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Chapter 6

Iterative Methods

In the previous chapter we considered methods which directly solve (SLE) using Θ(n3) opera-
tions. In this chapter we will introduce iterative methods. These methods construct a sequence
(xk)k∈N with

xk → x for k →∞,

where x solves (SLE). These methods approximate the exact solution x by the computed value
xk for large k and thus, even in the absence of rounding errors, the resulting algorithms only
compute approximate solutions to (SLE). In practical applications this is no problem, since one
can choose k large enough such that the approximation error is of the same order of magnitude
as the deviation caused by rounding errors in the �exact� methods.

The primary motivation for the use of such iterative methods arises for problems where
A ∈ Cn×n with n � 1, so that solving the problem by the direct methods of Chapter 5, with
cost Θ(n3), is prohibitively expensive. If A has some special structure, for example if matrix-
vector multiplication with A is cheap to calculate, then iterative methods can have a substantial
advantage over direct methods.

For the methods considered in this chapter, the sequence (xk) is constructed iteratively, i.e.
starting with a value x0 the value xk, for each k, is computed from xk−1. The map xk−1 7→ xk
may be either linear or nonlinear; we discuss methods of both types. The two competing criteria
for the iteration are:

• The calculation of xk from xk−1 should be cheap, relative to the cost of solving (SLE).

• The convergence of xk to x should be fast.

These two criteria are often contradictory to one another and the trade-o� between them is very
much dependent upon the matrix A itself. To illustrate this trade o� it is useful to have the
following two extreme iterative methods in mind:

• xk = A−1b; and

• xk = xk−1.

The �rst is not cheap to implement � each step involves solving (SLE) by a direct method,
and our assumption is that this is prohibitively expensive � but converges fast: in one step.
The second is cheap to implement but does not converge at all. Successful iterative methods lie
somewhere between these extremes.

In many cases, the cost of computing xk from xk−1 is dominated by the cost of matrix-vector
multiplication for a matrix N which is derived from A. The resulting methods will be e�cient if
these multiplications can be computed e�ciently. The most common structure leading to cheap
matrix-vector multiplication is sparsity : where A has only a small number of non-zero entries.
Then matrix-vector multiplication by A, A∗ or any matrix N where N inherits the sparsity of
A will be cheap; the matrix N might, for example, be formed from the o�-diagonals of A.

In this chapter we will focus only on errors incurred through using a �nite number of iterations
but we will not discuss the e�ect of rounding errors. For each section describing a computational
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approach there will be three subsections, one de�ning the method, the second studying error as
a function of the number of iterations k, and the third discussing computational cost. We will
consider the cost of achieving an error of size ε. We will show that, for some important problems,
it is possible to compute an approximate solution in time Θ(na) with a < 3 as the dimension n
of the problem increases, thus beating the cost of the direct methods from the previous chapter.

6.1 Linear Methods

Iterative methods where xk is computed from xk−1 by application of a linear map are called
linear methods. In this section we describe results about linear methods in general. Sections 6.2
and 6.3 below introduce two speci�c instances of linear methods, namely the Jacobi method and
the successive over relaxation scheme (SOR).

The Method

The basic idea of the methods described in this section is to write the matrix A as A = M +N
where the matrix M is easier to invert than A. Then, given xk−1, we can de�ne xk by

Mxk = b−Nxk−1. (6.1)

If we assume for the moment that limk→∞ xk = x, then the limit x satis�es

Mx = lim
k→∞

Mxk = lim
k→∞

(b−Nxk−1) = b−Nx

and thus we get Ax = b. This shows that the only possible limit for this sequence is the solution
of (SLE). Thus, once we know that the generated sequence converges for a given matrix A
and a given initial value x0, we can iteratively compute xk for a �big� value of k to get an
approximation for x. In the following sections we will give su�cient criteria for convergence of
the sequence (xk)k∈N.

This leads to the following algorithm.

Algorithm LI (linear iterative methods).
input: A = M +N ∈ Cn×n, b ∈ Cn, x0 ∈ Cn
output: xk ∈ Cn with Axk ≈ b
1: for k = 1, 2, 3, . . . do
2: compute yk = b−Nxk−1

3: solve Mxk = yk
4: end for

To actually implement this method one needs to choose M and N such that the method
converges (we discuss di�erent choices below). One also needs a stopping criterion to decide
when to quit iterating and to return the resulting approximation xk.

Thus, the remaining problem is to choose a stopping criterion for the iteration. We consider
the error

ek = x− xk,

and the residual vector
rk = b−Axk = Aek

where x is the exact solution of (SLE) and xk the approximation at step k. We would like to
choose k big enough such that ‖ek‖ ≤ ε for a given ε > 0 but, since ek cannot be computed
without knowledge of the exact solution x, this is not a practical stopping criterion. Instead,
we will stop the iteration once ‖rk‖ ≤ εr for some εr > 0. The residual error rk can easily be
computed during the iteration and from the estimate ‖ek‖ = ‖A−1rk‖ ≤ ‖A−1‖‖rk‖ ≤ ‖A−1‖εr

we can get estimates for the error if needed.
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Error Analysis

Since Mx = b−Nx we get the relation

ek = −M−1Nek−1.

The method converges if ek → 0 for k → ∞. The following lemma characterises convergence
with the help of the spectral radius of the matrix R = −M−1N .

Lemma 6.1. Let R ∈ Cn×n, e0 ∈ Cn and ek = Rke0 for all k ∈ N. Then ek → 0 for all e0 ∈ Cn
if and only if ρ(R) < 1.

Proof. Assume �rst ρ(R) < 1. Then by Lemma 2.10 we �nd an induced matrix norm ‖ · ‖S with
‖R‖S < 1 and we get

‖ek‖S = ‖Rke0‖S ≤ ‖R‖kS‖e0‖S −→ 0

for k →∞.
On the other hand, if ρ(R) ≥ 1, then there is an e0 ∈ Cn \ {0} with Re0 = λe0 for some

λ ∈ C with |λ| ≥ 1. For this vector e0 we get, in any norm ‖ · ‖,

‖ek‖ = ‖Rke0‖ = |λ|k‖e0‖

and thus ek does not converge to 0 as k →∞.

Remarks.

1. The lemma shows that the linear iterative method de�ned by (6.1) converges for every
initial condition x0 ∈ Cn if and only if ρ(R) < 1 for R = −M−1N . The convergence is
fast if ρ(R) is small.

2. Since ‖ · ‖ ≥ ρ(·) for every matrix norm ‖ · ‖, a su�cient criterion for convergence of an
iterative method is ‖R‖ < 1 for any matrix norm ‖ · ‖. On the other hand, whenever the
method converges for every initial condition, there is an induced matrix norm ‖ · ‖ with
‖R‖ < 1 by Lemma 2.10.

Computational Complexity

When measuring computational cost for iterative methods it is of interest to know how many
iterations are required to reduce the error to size ε. As before we will consider the relative error
‖xk − x‖/‖x‖ = ‖ek‖/‖x‖. By Proposition 3.3 we have

‖ek‖
‖x‖

≤ κ(A)
‖rk‖
‖b‖

. (6.2)

Finding k to achieve
‖rk‖
‖b‖

≤ ε, (6.3)

and thus
‖ek‖
‖x‖

≤ κ(A)ε, (6.4)

will lead to an estimate of the computational cost of using the iterative method.
Using the relation rk = Aek = ARke0 we can estimate the left hand side of (6.3) to get,

from (6.2),
‖ek‖
‖x‖

≤ κ(A)
‖A‖‖R‖k‖e0‖

‖b‖
for any vector norm ‖ · ‖. If ‖ · ‖ is chosen so that ‖R‖ < 1 then choosing k to be the smallest
integer greater than

k] =
ln ε−1 + ln ‖A‖+ ln ‖e0‖ − ln ‖b‖

ln ‖R‖−1
(6.5)
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will ensure (6.3).
In order to study the dependence of the cost on the dimension n of the problem we consider

a family of matrices A = M +N ∈ Cn×n and vectors b ∈ Cn and also a family of vector norms
on the spaces Cn. The number k] depends on both ε and n; the n dependence can enter through
‖R‖−1, ‖A‖, ‖b‖ and ‖e0‖, but the largest contribution is often through ‖R‖−1, for families of
problems in which ‖R‖ = 1−Θ(n−β). We incorporate this into the following assumptions, which
lead to a quanti�cation of computational cost.

Assumption 6.2. 1. Calculation of Nx and M−1x together costs Θ(nα) for some α > 0,
uniformly for all x ∈ Cn.

2. ‖R‖ = 1−Θ(n−β) for some β > 0.

3. κ(A), ‖A‖, ‖b‖ and ‖e0‖ are bounded uniformly in n.

Theorem 6.3. Under Assumption 6.2 the computational cost to achieve (6.4) by using the linear
iterative method is bounded above by cnα+β ln ε−1, for some constant c independent of n and ε.

Proof. The �rst item of the assumption ensures that each step of the iteration costs Θ(nα). The
second item of the assumption implies that

(
ln ‖R‖−1

)−1 = Θ(nβ). Hence combining the second
and third items and using (6.5) gives the desired result.

Remarks.

1. For the theorem to be practically useful, the norm in (6.3) must be readily computable.
In some cases ‖R‖ < 1 in some computable norm such as ‖ · ‖∞, ‖ · ‖2 or ‖ · ‖1. Then the
preceding theorem applies directly.

In other cases we only know that ‖R‖S < 1; as the construction of ‖·‖S requires knowledge
of the Jordan Canonical form, this is not a readily computable norm. However, by norm
equivalence, we know that there is a constant c2 ∈ (0,∞) such that

‖a‖
‖b‖
≤ c2

‖a‖S
‖b‖S

.

The constant c2 may depend on n, but in many important applications this occurs only in
a polynomial fashion.

Iterating until we �nd a k so that
‖rk‖S
‖b‖S

≤ ε

c2
(6.6)

will ensure
‖rk‖
‖b‖

≤ ε

and hence (6.4). Finding k to achieve (6.6) will incur cost

knα+β
(

ln ε−1 + ln c2(n)
)

by the methods given in the preceding theorem, if Assumption 6.2 holds in the norm ‖ ·‖S .
Thus there is an increase in cost by only a logarithmic factor in n when c2(n) is polynomial
in n.

2. In many applications κ(A), ‖A‖ and ‖b‖ do depend upon n, but only polynomially. Again
this leads to an increase in computational cost over the above, but only by a factor which
is logarithmic in n.
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6.2 The Jacobi Method

In this and the next section we will consider speci�c methods which are obtained by choosing
the matrices M and N in (6.1). For a matrix A ∈ Cn×n de�ne the three n× n-matrices

L =


a21

a31 a32

... · · ·
an1 an2 . . . an,n−1

 , D =


a11

a22

a33

. . .

ann

 ,

U =


a12 a13 . . . a1n

a23 . . . a2n

. . .
...

an−1,n

 . (6.7)

Then we have A = L+D+U . The matrices L and U are, respectively, strictly lower and upper
triangular.

The Method

The iterative method obtained by choosing M = D and N = L + U in (6.1) is called Jacobi
method. This choice of M and N leads to the iteration

xk = D−1
(
b− (L+ U)xk−1

)
for all k ∈ N. Since D is diagonal, the inverse D−1 is trivial to compute.

Error Analysis

In order to study convergence of the Jacobi method using Lemma 6.1 we have to consider the
matrix R = −M−1N = −D−1(L + U). The method converges if and only if ρ(R) < 1. The
following theorems give su�cient criteria for this to happen.

Theorem 6.4. a) The Jacobi method is convergent for all matrices A with

|aii| >
∑
j 6=i

|aij | (6.8)

for i = 1, . . . , n. (This condition is called the strong row sum criterion.)
b) The Jacobi method is convergent for all matrices A with

|ajj | >
∑
i6=j

|aij | (6.9)

for j = 1, . . . , n. (This condition is called the strong column sum criterion.)

Proof. a) The matrix R = −D−1(L+ U) has entries

rij =

{
−aij

aii
, if i 6= j, and

0 else.

Using Theorem 1.28 we �nd

‖R‖∞ = max
i=1,...,n

1
|aii|

∑
j 6=i

|aij |.

Thus the strong row sum criterion gives ‖R‖∞ < 1 which implies ρ(R) < 1 and the method
converges.
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b) If the strong column sum criterion (6.9) holds for A, then the strong row sum crite-
rion (6.8) holds for A∗ and thus the method converges for A∗. From Lemma 6.1 we know then
ρ
(
−(D∗)−1(L∗ +U∗)

)
< 1. Since for every matrix R the matrices R, R∗ and also D−1RD have

the same eigenvalues we get

ρ
(
−D−1(L+ U)

)
= ρ
(
−D−1(L+ U)D−1D

)
= ρ(−(L+ U)D−1)

= ρ
(
−(D∗)−1(L∗ + U∗)

)
< 1

and so the method converges for A.

Remark. As well as showing convergence, the proof of the theorem estimates ‖R‖∞ < 1. This
estimate can be used in Theorem 6.3 to analyse computational complexity.

De�nition 6.5. A matrix A ∈ Cn×n is called irreducible if there is no permutation matrix P
such that

PTAP =
(
Ã11 Ã12

0 Ã22

)
where Ã11 ∈ Cp×p and Ã22 ∈ Cq×q are square matrices with p, q > 0 and p+ q = n, Ã12 ∈ Cp×q,
and 0 is the q × p zero-matrix.

There is an alternative description of irreducibility, which is often easier to check than the
de�nition given. To the matrix A we associate the oriented graph G(A) with vertices 1, . . . , n
and edges i −→ j for all i, j ∈ {1, . . . , n} with aij 6= 0. Then the matrix A is irreducible if
and only if the graph G(A) is connected, i.e. if you can reach any vertex j from any vertex i by
following edges.

Example. Consider the matrix

A =

1 −1
1 −1

1

 .

The associated graph is

1 2 3

The matrix A is not irreducible (indeed P = I in the de�nition is enough to see this) and since
there is no path from 3 to 1, the graph G(A) is not connected.

Example. In continuation of the previous example consider the modi�ed matrix

A =

 1 −1
−1 2 −1

−1 1

 .

The associated graph is

1 2 3

Now the graph G(A) is connected and the matrix is thus irreducible.
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Remarks.
The proof of equivalence of the two characterisations of irreducibility is based on the following

observations.

1. For any permutation P the graphs G(A) and G(PTAP ) are isomorphic, only the vertices
are numbered in a di�erent way.

2. The block Ã22 in the de�nition of irreducibility corresponds to a set of states from where
there is no path into the states corresponding to the block Ã11.

The characterisation of irreducibility through G(A) shows that the diagonal entries of A are
irrelevant to determining irreducibility. Any matrix which has non-zero o�-diagonal entries if
and only if A does so, will have the same graph. Hence R = −D−1(L+ U) is irreducible if and
only if A is.

Theorem 6.6. If A is irreducible and satis�es

|aii| ≥
∑
j 6=i

|aij | (6.10)

for i = 1, . . . , n but

|akk| >
∑
j 6=k

|akj | (6.11)

for one index k, then the Jacobi method converges. (This condition is called the weak row sum
criterion.)

Proof. We have to show that ρ(R) < 1 where R = −D−1(L + U). De�ne the matrix |R| =
(|rij |)ij ∈ Rn×n and the vector e = (1, 1, . . . , 1)T ∈ Rn. Then we have

(|R|e)i =
( n∑
j=1

|rij | · 1
)
i

=
(∑
j 6=i

|aij |
|aii|

)
≤ 1 = ei.

Thus |R|e ≤ e where this and some of the following inequalities between vectors are to be read
componentwise. Therefore we get

|R|l+1e ≤ |R|le ≤ · · · ≤ e

for all l ∈ N.
Let t(l) = e − |R|le ≥ 0. Then the vectors t(l) are componentwise increasing. Let τl be the

number of non-vanishing components of t(l). We will show that τl is strictly increasing until it
reaches the value n. Assume, for contradiction, that τl+1 = τl = k < n. Since one row of A
satis�es the strict inequality (6.11) we have |R|e 6= e and thus k > 0. Then without loss of
generality (since we can reorder the rows and columns of A) we have

t(l) =
(
a
0

)
, t(l+1) =

(
b
0

)
where a, b ∈ Rk and a, b > 0. We can conclude(

b
0

)
= t(l+1) = e− |R|l+1e

≥ |R|e− |R|l+1e = |R|t(l)

=
(
|R11| |R12|
|R21| |R22|

)(
a
0

)
.

From a > 0 we have |R21| = 0. Hence R is not irreducible. This implies that A is not irreducible,
and we have found the required contradiction. Thus we can conclude that τl+1 > τl whenever
τl < n. This proves t(n) > 0 componentwise.

Hence e > |R|ne and we get, using Lemma 1.34,

ρ(R)n ≤ ρ(Rn) ≤ ‖Rn‖∞ =
∥∥|Rn|∥∥∞ ≤ ∥∥|R|n∥∥∞ = max

i=1,...,n

(
|R|ne

)
i
< 1

and thus ρ(R) < 1. This completes the proof.
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Computational Complexity

The sequence (xk)k∈N from the Jacobi method is de�ned by the relation

xk = −D−1
(
b− (L+ U)xk−1

)
.

For each iteration we have to calculate
1) the product (L+ U)xk−1

2) the di�erence b− · · · (needs n subtractions)
3) the product D−1 · · · (needs n divisions because D is diagonal)

For general matrices the �rst step needs Θ(n2) operations and thus dominates the computational
cost. If the matrix A is sparse, i.e. if it contains many zeros, the matrix-vector multiplication
can be performed using fewer operations.

Example. Assume that each row of A contains at most ` > 0 non-zero entries outside the
diagonal. Then step 1) requires Θ(n) operations and performing one step of Jacobi method has
cost Θ(n) as n→∞. In this case we get α = 1 in Theorem 6.3.

6.3 The Gauss-Seidel and SOR Methods

The Method

The method obtained by usingM = L+ωD and N = U+(1−ω)D in (6.1), for the matrices L, D
and U from (6.7) and some ω ∈ R, is called the Successive Over Relaxation (SOR) scheme. The
parameter ω can be chosen to accelerate convergence. The special case ω = 1, i.e. M = L + D
and N = U , is called the Gauss-Seidel method. For the SOR scheme we get the iteration

(L+ ωD)xk = b− Uxk−1 − (1− ω)Dxk−1.

Since (L+ ωD) is lower triangular we can use forward substitution to calculate xk in each step.

Error Analysis

The error analysis of the SOR and Gauss-Seidel method is similar to the analysis for the Jacobi
method from the previous section. The convergence properties of the SOR scheme are determined
by the matrix

R = −(L+ ωD)−1
(
U + (1− ω)D

)
.

The following summarises some su�cient criteria for convergence of the Gauss-Seidel method.

Theorem 6.7. Assume either
a) A satis�es the strong row sum criterion or
b) A is irreducible and satis�es the weak row sum criterion.

Then the Gauss-Seidel (ω = 1) method converges.

Computational Complexity

The speed of convergence and thus the cost of the method depends on the choice of the param-
eter ω. For linear systems arising from discretisation of certain elliptic PDEs, optimising can
lead to an order of magnitude improvement in e�ciency, when compared with Gauss-Seidel and
Jacobi methods. This arises though decreasing β in Theorem 6.3 for appropriate choice of ω. In
the same context Gauss-Seidel improves over Jacobi, but not by an order of magnitude.
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6.4 Nonlinear Methods

In the remaining part of this chapter we will consider nonlinear methods for solving (SLE),
i.e. methods where the map from xk to xk+1 is no longer linear. We restrict ourselves to the
case where the matrix A is Hermitian and positive de�nite. This section explains the general
approach. The remaining two sections of the chapter examines two speci�c instances of nonlinear
methods in detail.

The fundamental observation for the methods we consider here is that the vector equation
Ax = b is equivalent to ‖Ax − b‖ = 0 for any vector norm ‖ · ‖. Since we assume that A is
Hermitian and positive de�nite, 〈x, y〉A = 〈x,Ay〉 de�nes an inner product and ‖x‖2A = 〈x,Ax〉
de�nes the associated vector norm. The matrix A−1 is again Hermitian and positive de�nite
and ‖x‖2A−1 = 〈x,A−1x〉 de�nes the associated vector norm.

Lemma 6.8. Let A ∈ Cn×n be Hermitian and positive de�nite and b ∈ Cn. Then x ∈ Cn solves
Ax = b if and only if x is the minimiser of the function

g(y) =
1
2
‖Ay − b‖2A−1 ∀y ∈ Cn. (6.12)

In this section we will consider iterative methods which solve (SLE) by constructing sequences
(xk)k∈N which converge to the unique minimum of the function g. Using the residual rk = b−Axk
and the error ek = x− xk, where x is the exact solution of Ax = b, we can write

g(xk) =
1
2
‖rk‖2A−1 =

1
2
‖ek‖2A.

Thus minimising g corresponds to minimising the length of the residual vector in the ‖ · ‖A−1-
norm or, equivalently, to minimising the error for the exact solution in the ‖ · ‖A-norm.

The Method

The two methods that we study below both take the form

xk = xk−1 + αk−1dk−1, (6.13)

where dk−1 ∈ Cn \ {0} is called the search direction and the scalar αk−1 ∈ C is called the step
length. The step length is chosen so that, given xk−1 and dk−1,

αk−1 = argmin
α∈C

g(xk−1 + αdk−1).

Since g is a convex, quadratic function, the value αk−1 is uniquely determined.
The minimum can be found using the fact the g satis�es

g(y + εz) = g(y) + εRe〈z,Ay − b〉+
ε2

2
‖z‖2A (6.14)

for all ε ∈ R and y, z ∈ Cn, where Re denotes the real part of a complex number. Taking the
derivative w.r.t. ε (along the real line) gives

∂

∂ε
g(y + εz)

∣∣
ε=0

= Re〈z,Ay − b〉. (6.15)

At the minimum we �nd

0 =
∂

∂ε
g(xk−1 + αk−1dk−1 + εβ̄dk−1)

∣∣
ε=0

= Reβ〈dk−1, A(xk−1 + αk−1dk−1)− b〉
= Reβ〈dk−1,−rk−1 + αk−1Adk−1〉

for all β ∈ C and thus

αk−1 =
〈dk−1, rk−1〉
‖dk−1‖2A

.

Hence we get the following algorithm.
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Algorithm NI (nonlinear iterative methods).
input: A ∈ Cn×n Hermitian and positive de�nite, b ∈ Cn, x0 ∈ Cn
output: xk ∈ Cn with Axk ≈ b
1: for k = 1, 2, 3, . . . do
2: compute dk−1

3: αk−1 =
〈dk−1, rk−1〉
‖dk−1‖2A

4: xk = xk−1 + αk−1dk−1

5: end for

The steepest descent method and the conjugate gradient method, discussed below, are in-
stances of this algorithm, employing di�erent choices for the search directions dk.

Error Analysis

The error analysis for nonlinear methods is done in two steps. We �rst study how fast the
value ‖ek‖2A = 2g(xk) decays. This analysis depends on the speci�c choice of search directions dk
and is presented for the two methods below, separately. In a second step we can use this result
to estimate the error of the approximate solution xk in the Euclidean norm:

Lemma 6.9. Assume ‖ek‖A ≤ cqk‖e0‖A for all k ∈ N for some constants q, c > 0. Then

‖ek‖ ≤
√
κ(A)c qk‖e0‖ ∀k ∈ N

where κ(A) = ‖A‖2‖A−1‖2 is the condition number of A in the 2-norm.

Proof. Let λmin and λmax be the minimal and maximal eigenvalue of A. Then we have κ(A) =
λmax/λmin by (3.2) and from Lemma 1.21 we �nd

‖ek‖2 ≤
1

λmin
‖ek‖2A ≤

2
λmin

cqk‖e0‖2A ≤
λmax

λmin
cqk‖e0‖2.

This completes the proof.

For future reference we state the following relation, which describes how the residual error
changes in each step:

rk = rk−1 − αk−1Adk−1 ∀k ∈ N. (6.16)

This is a direct consequence of (6.13).

6.5 The Steepest Descent Method

The Method

The steepest descent method chooses a search direction which makes a step in the direction of
the (locally) steepest descent for g. From equation (6.14) we get

g(xk + εdk) = g(xk)− εRe〈dk, rk〉+
ε2

2
‖dk‖2A (6.17)

for all ε ∈ R. Thus, the direction of steepest descent corresponds to the direction dk which
maximises Re〈dk, rk〉 while keeping the length of dk �xed. Since dk is only determined up to a
scalar factor, we can choose

dk = rk ∀k ∈ N0

in (6.13). With this choice, the step length becomes

αk =
‖rk‖2

‖rk‖2A
and we get the following algorithm.
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Algorithm SD (steepest descent).
input: A ∈ Cn×n Hermitian, positive de�nite, b ∈ Cn, x0 ∈ Cn, εr > 0
output: xk ∈ Cn with Axk ≈ b
1: for k = 1, 2, . . . do
2: rk−1 = b−Axk−1

3: if ‖rk−1‖ ≤ εr then
4: return xk−1

5: end if
6: αk−1 = ‖rk−1‖2/‖rk−1‖2A
7: xk = xk−1 + αk−1rk−1

8: end for

Error Analysis

The following result establishes the convergence of the method.

Theorem 6.10. Let A be Hermitian and positive de�nite. Then the rate of convergence of the
steepest descent algorithm for solving (SLE) is given by

‖xk − x‖A ≤
√

1− 1/κ(A)
k
‖x0 − x‖A ∀k ∈ N,

where κ(A) is the condition number of A in the 2-norm.

Proof. By substituting ε = αk−1 into equation (6.17) we get

g(xk) = g(xk−1)− 1
2
〈dk−1, rk−1〉2

‖dk−1‖2A
=
(

1− 〈dk−1, rk−1〉2

‖dk−1‖2A‖rk−1‖2A−1

)
g(xk−1)

for all k ∈ N. Together with the estimates from Lemma 1.21 we get

g(xk) ≤
(

1− ‖rk−1‖4

λmax‖rk−1‖2 1
λmin
‖rk−1‖2

)
g(xk−1) =

(
1− 1

κ(A)

)
g(xk−1)

for all k ∈ N and thus

g(xk) ≤
(

1− 1
κ(A)

)k
g(x0).

The result follows then with ‖ek‖2A = 2g(xk).

Remarks.

1. If the matrix A is ill-conditioned then the method converges slowly. Ill-conditioning occurs
in the 2-norm when the eigenvalues of A are very di�erent: λmax � λmin. In this case the
steepest descent direction is almost orthogonal to the direction in which the solution lies.

2. Since the steepest descent method uses dk = rk, the search directions satisfy rk = rk−1 −
αk−1Ark−1 by (6.16). Using induction we get

xk ∈ x0 + span{r0, Ar0, A
2r0, . . . , A

k−1r0} (6.18)

for all k ∈ N.

Computational Complexity

We can achieve
‖xk − x‖A ≤ ε (6.19)

by choosing k to be the smallest integer greater than

k# =
ln ε−2 + ln ‖x0 − x‖2A
− ln

(
1− κ(A)−1

) . (6.20)
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Assumption 6.11. 1. Calculation of Ax costs O(nα) uniformly in x ∈ Cn.

2. The condition number of A in the 2-norm satis�es κ(A) = O(nβ).

3. ‖x− x0‖A is bounded uniformly in n.

Theorem 6.12. Under Assumption 6.11 the computational cost of using the steepest descent
method to achieve (6.19) is bounded above by cnmax{α,1}+β ln ε−1, for some constant c indepen-
dent of n and ε.

Proof. The �rst item of the assumption ensures that each step of the iteration costs Θ(nmax{α,1}).
Hence, combining the second and third items and using (6.20) gives the desired result.

6.6 The Conjugate Gradient Method

Theorem 6.10 shows that the steepest descent method can behave quite poorly on ill-conditioned
problems. The conjugate gradient method, and its pre-conditioned variants, go a long way to
ameliorating this di�culty, at little extra cost when compared to the method of steepest descents.

Again, we assume that A is Hermitian and positive de�nite. The conjugate gradient method
is similar to the steepest descent method but instead of making steps in direction of the steepest
descent it restricts the increments xk − xk−1 to lie in the Krylov subspace

Kk(A, r0) = span{r0, Ar0, A
2r0, . . . , A

k−1r0}.

Since the spaces Kk(A, r0) are increasing, this leads to xk ∈ x0 +Kk(A, r0) for all k and, as we
will see, the algorithm even chooses xk to minimise the function g from (6.12) on this space.

An underlying, general approach to the design of iterative methods for systems of linear
equations (and also for the eigenvalue problem) is as follows: seek approximate solutions which
at the kth step of the iteration use only increments in Kk(A, r0). Such methods are natural when
matrix-vector multiplication by A is cheap to compute. Equation (6.18) shows that the steepest
descent method follows this principle. The conjugate gradient method can be implemented al-
most as easily as the method of steepest descents, but since it �nds the optimal approximation to
x from Kk(A, r0) we expect it to perform better. Indeed, the CG method converges considerably
faster on ill-conditioned problems. Many other iterative methods also use the idea of �nding
approximations from the Krylov subspace.

The Method

De�nition 6.13. Given A Hermitian positive-de�nite we say that the set {d0, · · · , dk} is A-
orthogonal (or conjugate) if

〈di, dj〉A = 0 ∀i 6= j.

The following Lemma shows that choosing the search directions dk to be A-orthogonal is
advantageous for non-linear iterative methods.

Lemma 6.14. Assume that the search directions {d0, . . . , dk−1} form an A-orthogonal set. Then
xk, given by (6.13), minimises g over x0 + span{d0, · · · , dk−1}.

Proof. De�ne G : Cn → R by

G(γ) = g(x0 +
k−1∑
l=0

γldl) ∀γ ∈ Cn.

Then G is a convex quadratic function and has a unique minimum where all directional deriva-
tives vanish. Using (6.15) with y = x0 +

∑k−1
l=0 γldl and z = β̄dm we �nd

Reβ〈dm, Ax0 +
k−1∑
l=0

γlAdl − b〉 = 0
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for all β ∈ C and thus

γm =
〈dm, r0〉
‖dm‖2A

for m = 0, . . . , k − 1.
Using (6.16) and the conjugacy of the dl we get

〈dm, rk〉 = 〈dm, rk−1〉 − αk−1〈dM , Adk−1〉 = 〈dm, rk−1〉

for k = 1, . . . ,m and thus 〈dm, r0〉 = 〈dm, rm〉. This shows that the minimum is, indeed, attained
for γ = α.

The steepest descent method also chooses xk ∈ x0 + span{d0, · · · , dk−1}, but minimises g
only along a line instead of over all of the a�ne sub-space. Thus, any method with A-orthogonal
search directions will be at least as good as the steepest descent method.

In general it is expensive to construct orthogonal sets � something like a Gram-Schmidt
orthogonalisation is required. Thus to make a viable method it remains to try and construct
an iteration which iteratively generates an A-orthogonal set in a cheap fashion. The idea of the
conjugate gradient method is to construct the A-orthogonal set by using the iteration

dk = rk + βkdk−1

where the factor βk is chosen to enforce 〈dk−1, dk〉A = 0, giving

βk = −〈dk−1, rk〉A
‖dk−1‖2A

.

This clearly ensures that dk is orthogonal to dk−1; we will see that it is possible to choose d0

such that the entire set {d0, . . . , dk} is an A-orthogonal set.
A preliminary form of the resulting algorithm is given by the following procedure: choose

x0, d0 ∈ Cn and let r0 = b−Ax0. Then, for k = 1, 2, . . . de�ne, in the given order,

αk−1 =
〈dk−1, rk−1〉
‖dk−1‖2A

, xk = xk−1 + αk−1dk−1,

rk = rk−1 − αk−1Adk−1, βk = −〈dk−1, rk〉A
‖dk−1‖2A

, dk = rk + βkdk−1. (6.21)

Here we have used (6.16) to compute rk inductively. This allows to compute all required quan-
tities with only one matrix-vector multiplication per step (to calculate Adk−1).

Lemma 6.15. Let x1, . . . , xk be given by the conjugate gradient method (6.21) with d0 = r0.
Assume r0, . . . , rk 6= 0 and d0, . . . , dk−1 6= 0. Then dk 6= 0 and 〈dk−1, rk〉 = 〈rk−1, rk〉 = 0.
Furthermore

αk−1 =
‖rk−1‖2

‖dk−1‖2A
> 0, βk =

‖rk‖2

‖rk−1‖2
> 0.

Proof. From the de�nition of rk and the de�nition of αk−1 we get

〈dk−1, rk〉 = 〈dk−1, rk−1〉 − αk−1‖dk−1‖2A = 〈dk−1, rk−1〉 − 〈dk−1, rk−1〉 = 0

and thus, by Pythagoras' theorem,

‖dk‖2 = ‖rk‖2 + |βk|2‖dk−1‖2 ≥ ‖rk‖2 > 0

and dk 6= 0. For k = 1 we have 〈rk−1, dk−1〉A = 〈d0, d0〉A = ‖dk−1‖2A. For k > 1 we can solve the
equation de�ning dk−1 for rk−1 to get 〈rk−1, dk−1〉A = 〈dk−1 − βk−1dk−2, dk−1〉A = ‖dk−1‖2A.
Hence

〈rk−1, rk〉 = 〈rk−1, rk−1〉 − αk−1〈rk−1, Adk−1〉 = 0

which is the second orthogonality relation from the claim.
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For k = 1 we have 〈dk−1, rk−1〉 = 〈r0, r0〉 = ‖rk−1‖2. For k > 1 we can use the the de�nition
of dk−1 to get 〈dk−1, rk−1〉 = 〈rk−1 + βk−1dk−2, rk−2〉 = ‖rk−1‖2. Thus we get

αk−1 =
〈dk−1, rk−1〉
‖dk−1‖2A

=
‖rk−1‖2

‖dk−1‖2A
> 0.

Finally, since αk−1 > 0, we can solve the de�nition of rk for Adk−1 to get

βk =
〈−Adk−1, rk〉
‖dk−1‖2A

=
〈rk − rk−1, rk〉
αk−1‖dk−1‖2A

=
‖rk‖2

‖rk−1‖2
> 0.

This completes the proof.

A consequence of Lemma 6.15 is that, assuming we have not already found the exact solution,
we will have dk 6= 0 and thus all the expressions in (6.21) make sense. We can now prove that
the conjugate gradient method does indeed produce an A-orthogonal set of search directions.

Lemma 6.16. Let x1, . . . , xk be given by the conjugate gradient method (6.21) with d0 = r0.
Then {d0, · · · , dk−1} ⊆ Kk(A, r0) is an A-orthogonal set.

Proof. We �rst prove by induction that

span{r0, r1, . . . , rl} = span{d0, d1, . . . , dl} = span{r0, Ar0, . . . , A
lr0} (6.22)

for l = 0, . . . , k− 1. Since d0 = r0, the statement holds for l = 0. Now let l > 0 and assume that
the statement holds for l − 1. Then, since αl−1 6= 0, we can solve the de�nition of rl for Adl−1

to get Adl−1 ∈ span{rl−1, rl} and thus

Alr0 = A(Al−1r0) ∈ span{Ad0, . . . , Adl−1} ⊆ span{r0, . . . , rl}.

This shows span{r0, Ar0, . . . , A
lr0} ⊆ span{r0, r1, . . . , rl}. From the de�nition of dk we get

rl = dl − βldl−1 ∈ span{dl−1, dl} ⊆ span{d0, d1, . . . , dl}

and thus span{r0, r1, . . . , rl} ⊆ span{d0, d1, . . . , dl}. Finally we have

dl = rl + βldl−1 = −αl−1Adl−1 + rl−1 + βldl−1 ∈ span{r0, . . . , A
lr0}

and thus span{d0, d1, . . . , dl} ⊆ span{r0, Ar0, . . . , A
lr0}. This completes the proof of (6.22).

Assume for induction that {d0, . . . , dk−1} is an A-orthogonal set. This is true for k = 1. Now
let k > 1. From the de�nition of rj+1 we get

〈di, rj+1〉 = 〈di, rj〉 − αm〈di, dj〉A = 〈di, rj〉

for j = i+1, . . . , k−1 and thus, by induction, 〈di, rj〉 = 〈di, ri+1〉 = 0 for all 0 ≤ i < j ≤ k where
the last identity comes from Lemma 6.15. Since Adi ∈ span{ri, ri+1} ⊆ span{d0, . . . , di+1}, we
get

〈di, rk〉A = 〈Adi, rk〉 = 0

for i = 0, . . . , k − 2. Using this result we can prove that dk is A-orthogonal to d0, . . . , dk−1: for
i < k − 1 we get

〈di, dk〉A = 〈di, rk〉A + βk〈di, dk−1〉A = 〈di, rk〉A = 0

and 〈dk−1, dk〉 = 0 by the construction of βk. This completes the proof.

The CG-algorithm is normally implemented in the following form which exploits the ex-
pressions for αk, βk as derived in Lemma 6.15. This allows the required number of arithmetic
operations to be kept small.
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Algorithm CG (conjugate gradient method).
input: A ∈ Cn×n Hermitian, positive de�nite, b ∈ Cn, x0 ∈ Cn, εr > 0
output: xk ∈ Cn with xk ≈ A−1b

1: r0 = b−Ax0, d0 = r0

2: for k = 1, 2, 3, . . . do

3: αk−1 =
‖rk−1‖2

‖dk−1‖2A
> 0

4: xk = xk−1 + αk−1dk−1

5: rk = rk−1 − αk−1Adk−1

6: if ‖rk‖ ≤ εr then
7: return xk
8: end if

9: βk =
‖rk‖2

‖rk−1‖2
> 0

10: dk = rk + βkdk−1

11: end for

Error Analysis

We have already seen, in Lemma 6.14, that any method with A-orthogonal search directions will
have smaller errors than the steepest descent method. The following theorem shows a surprising
result: these methods, even though iterative by construction, obtain the exact solution of (SLE)
after at most n iterations.

Theorem 6.17. If {d0, . . . , dn−1} form an A-orthogonal set in Cn then, for any starting vec-
tor x0, the sequence (xk) given by (6.13) reaches the exact solution x of (SLE) in at most n
steps.

Proof. The set {d0, · · · dn−1} forms an A-orthogonal basis for Cn and so we may write

x− x0 =
n−1∑
k=0

γkdk, γk =
〈dk, x− x0〉A
‖dk‖2A

.

Also, by construction of the xk,

xk − x0 =
k−1∑
i=0

αidi.

Conjugacy gives
〈dk, xk − x0〉A = 0

and thus

〈dk, x− x0〉A = 〈dk, x− x0〉A + 〈dk, x0 − xk〉A = 〈dk, x− xk〉A = 〈dk, rk〉

for k = 0, . . . , n− 1. Comparing the de�nitions of αk and γk we �nd αk = γk which implies

x− x0 =
n−1∑
k=0

αkdk = xn − x0

so that x = xn as required.

Corollary 6.18. The conjugate gradient algorithm, for any starting vector x0, reaches the exact
solution of (SLE) in at most n steps.

Proof. Assume that the algorithm has not converged in n − 1 steps; otherwise the proof is
complete. Then the set {d0, · · · , dn−1} is A-orthogonal by Lemma 6.16. Hence the result follows
from Theorem 6.17.
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Remark. When the computation is performed on a computer, rounding errors will cause r̂n 6= 0
where r̂n is the calculated value for the residual error rn. In practice one just treats the method
as an iterative method and continues the iteration until the residual error ‖r̂k‖ is small enough.
Typically the exit criterion will even be reached for k < n.

In order to understand how the conjugate gradient method performs iteratively, we describe
an error analysis based around the theory of polynomial approximation. In the following we let

Λ(A) := {λ ∈ C | λ is an eigenvalue of A }

and we let Pk denote the set of all polynomials of degree k with p(0) = 1.

Theorem 6.19. If the conjugate gradient algorithm has not converged at step k, then

‖xk − x‖A = inf
p∈Pk

‖p(A)(x0 − x)‖A

≤
(

inf
p∈Pk

max
λ∈Λ(A)

|p(λ)|
)
‖x0 − x‖A.

Proof. Since xk ∈ x0 + span{r0, Ar0, . . . , A
k−1r0} we can �nd γj ∈ C with

ek = x− xk = x− x0 +
k−1∑
j=0

γjA
jr0 = e0 +

k−1∑
j=0

γjA
j+1e0.

De�ning p ∈ Pk by

p(λ) = 1 +
k∑
j=1

γj−1λ
j

we obtain ek = p(A)e0 and thus

‖xk − x‖A = ‖p(A)(x0 − x)‖A.

The value xk minimises ‖xk − x‖A over xk ∈ Kk(A, b), which is equivalent to minimising over
all choices of γj . Hence

‖xk − x‖A = inf
p∈Pk

‖p(A)(x0 − x)‖A.

To complete the proof let (ψj) be a basis of Cn composed of eigenvectors of A with corre-
sponding eigenvalues λj . If we let e0 =

∑n
j=1 ajψj , then

ek = p(A)e0 =
n∑
j=1

ajp(λj)ψj

and thus we get

‖e0‖2A =
n∑
j=1

λj |aj |2, ‖ek‖2A =
n∑
j=1

λj |ajp(λj)|2.

Therefore

‖ek‖2A ≤ max
λ∈Λ(A)

|p(λ)|2
n∑
j=1

|aj |2λj = max
λ∈Λ(A)

|p(λ)|2‖e0‖2A

and the result follows.

By choosing an appropriately scaled and shifted Chebyshev polynomial and applying the
previous result, the following may be shown:

Theorem 6.20. Let κ be the condition number of a symmetric positive de�nite matrix A in the
Euclidean norm. Then the error in step k of the conjugate gradient algorithm for solving (SLE)
satis�es

‖xk − x‖A ≤ 2

[(√
κ+ 1√
κ− 1

)k
+
(√

κ+ 1√
κ− 1

)−k]−1

‖x0 − x‖A.

Proof. See Exercise 6-6.
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Computational Complexity

We make the same assumptions as for the steepest descent method, and show the decrease in
computational cost that can be obtained by using the conjugate gradient method.

Theorem 6.21. Under Assumption 6.11 the computational cost of using the conjugate gra-
dient method to achieve (6.19) is bounded above by cnmax{α,1}+ 1

2β ln ε−1, for some constant c
independent of n and ε.

Proof. The �rst item of the assumption ensures that each step of the iteration costs Θ(nmax{α,1}).
If
√
κ� 1 then the Theorem 6.20 gives

‖xk − x‖A . 2
(

1− 2√
κ

)k
‖x0 − x‖A.

Combining the second and third items and using this expression gives the desired result.

Remark. In an applied context the most important form of the conjugate gradient method is
its preconditioned form. Roughly speaking the method is applied to the linear system

MAx = Mb

where the preconditioner M is chosen to try and improve the conditioning of MA over A, yet
haveM easy to invert. In practical terms the algorithm di�ers from standard conjugate gradient
only by the addition of one multiplication with M per step.
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Linear iterative methods for (SLE) are described in the book [Saa97]. Theorem 6.7 is proved in
[SB02]. For discussion of Theorem 6.20 see [TB97]; for related results see [NW06]. The SOR
method is analysed in detail in [LT88].

The nonlinear iterative methods that we discuss are constructed through minimisation or
optimisation techniques. As such they are strongly related to the topic of optimisation in general.
This topic is well overviewed in [NW06]; the exposition of the conjugate gradient method there
forms the basis for ours. A good discussion of preconditioned versions of the conjugate gradient
method may also be found in this book.

Exercises

Exercise 6-1. The purpose of this exercise is to introduce you to the idea of iteration. Many
problems are simply too large to solve by the methods we have looked at so far � too much
computer time or memory is required if the dimension n of the matrix is large. For linear systems

Ax = b, A ∈ Rn×n, b ∈ Rn (6.23)

this will lead to the idea of generating approximating sequences {xk} which hopefully converge
to x as k →∞. For eigenvalue problems which are large we will study methods which generate
approximations to a subset of the eigenvalues, and not to all of them. (Note that for eigenvalue
problems it is necessary to use iterative methods in all cases, provided the matrix has dimension
bigger than 4; the main di�erence when the problem is large is that we solve for only a subset
of the eigenvalues).
(i) To show why iterative methods are necessary construct a matrix A with n = 1000 as follows:
type

>> A=0.0005*rand(1000);

>> b=rand(1000,1);

>> for i=1:1000; A(i,i)=1; end;
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This creates a matrix A with 1 on the diagonal and random entries uniformly distributed in
[0, 5× 10−4] on the o�-diagonals. Now try solving (6.23). Type

>> x=A\b;

Almost certainly your computer cannot handle a problem of this size. So type ctrl c to stop it
from trying. (If you are lucky enough to be working on a machine where this problem is solved
easily then repeat the exercise replacing 1000 by 10000 or by some matrix su�ciently large that
Matlab fails.) Keep the (original 1000 × 1000) matrix A for use in (iii) where we will use a
more successful approach to solve this problem.
(ii) We look at the simplest iterative method, known as Jacobi. Any matrix A can be written
uniquely as

A = D + L+ U

whereD is diagonal, L is zero on and above the diagonal and U is zero on and below the diagonal.
Assuming that D is invertible, consider a sequence {xk}∞k=1 satisfying

xk+1 = D−1[b− Lxk − Uxk].

If xk → x∗ as k →∞ then what equation does x∗ satisfy and why?
(iii) Implement the idea in (ii) as follows. Type

>> L=tril(A,-1);

>> U=triu(A,1);

>> 0=L+U;

This creates L and U as de�ned in (ii) (a Matlab question: why is this so?). Type

>> j=1;

>> y=ones(1000,1);

>> n(j)=2*j;

>> for i=1:n(j); y=b-O*y; end

>> rn(j)=norm(A*y-b)

What does this tell you? Repeat the above 5 lines of code with j = 2, 3, . . . , 5 and type:

>> plot(n,rn)

What do you observe? Also type

>> plot(n,log(rn))

(iv) Under what conditions on A will the Jacobi iteration converge to the correct solution of
(6.23)?

Exercise 6-2. Prove that the Jacobi iteration that you implemented in Exercise 6-1 converges
for the matrix A given there.

Exercise 6-3. Which of the following matrices are irreducible? For which of these matrices
does the Jacobi-method converge?4 2 1

2 1
1

 ,

1 3
3 25 4

4 1

 ,

8
4 2
2 1 1


Exercise 6-4. Show that the Jacobi method for the solution of1 1

1 10 2
2 1

x1

x2

x3

 =

1
2
3


converges and, for the iteration starting with x0 = 0, give an upper bound on the number of
steps required to get the relative error of the result below 10−6.
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Exercise 6-5. Consider the linear system Ax = b where

A =
(

1 0
0 ε

)
,

where b = (1, ε)T . Calculate x1 from the steepest descents algorithm, starting from x0 = 0.
Which component of the solution is better approximated after one step? Why is this?

Exercise 6-6. Prove Theorem 6.20 by choosing a Chebyshev polynomial scaled and shifted so
that its min/max properties hold on the interval [λmin(A), λmax(A)]. Then prove that

‖xk − x‖A ≤ 2δk‖x0 − x‖A

where δ ∈ (0, 1) and

δ ≈ 1− 2
√
µmin

µmax

for κ� 1.

Exercise 6-7. Let A ∈ Rn×n be a symmetric positive-de�nite matrix. If A = QMQT is the
eigenvalue/eigenvector decomposition of A, then we de�ne a square root of A (one of many
possible square roots) to be A1/2 = QDQT , where D is a diagonal matrix whose elements are
the square roots of the corresponding elements of M .

1. If B ∈ Rn×n is a matrix such that B and A1/2 commute, prove that

‖Bx‖A ≤ ‖B‖2‖x‖A, ∀x ∈ Rn

2. Using your proof above, prove that

inf
p∈Pk

‖p(A)y‖A ≤ inf
p∈Pk

max
λ∈Λ(A)

|p(λ)|‖y‖A

where Pk is the set of all polynomials p of degree less than or equal to k with p(0) = 1,
y ∈ Rn, and Λ(A) is the set of eigenvalues of A.

Exercise 6-8. De�ne

ϕ(x) :=
1
2
〈x,Ax〉 − 〈x, b〉

with A symmetric positive de�nite. Show that minimising ϕ(x) is equivalent to solving Ax = b.
Consider the algorithm

xk+1 = xk + αkrk

to minimise ϕ(x). Find αk which minimises ϕ(xk+1) over all αk ∈ R given xk. This choice of
αk de�nes the gradient or steepest descent algorithm.

For CG we have
xk+1 = xk + αkdk.

Show that the choice of αk made in Algorithm CG minimises ϕ(xk+1) over all α ∈ R, given xk
and dk.
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Chapter 7

Least Squares Problems

In this chapter we introduce algorithms for the (LSQ) problem: given A ∈ Cm×n and b ∈ Cm
with m ≥ n, �nd x ∈ Cn which minimises ‖Ax−b‖2. We will describe and discuss three di�erent
algorithms to solve (LSQ). The following theorem underpins all of the algorithms described.

Theorem 7.1. A vector x ∈ Cn minimises ‖Ax − b‖2 for A ∈ Cm×n and b ∈ Cm, if and only
if Ax− b is orthogonal to range(A).

Proof. Let g(x) = 1
2‖Ax − b‖ 2

2 . Then minimising ‖Ax − b‖2 is equivalent to minimising the
function g.

Assume that Ax− b is orthogonal to range(A) and let y ∈ Cn. Then

Ay −Ax = A(y − x) ⊥ Ax− b

and Pythagoras' theorem gives

‖Ay − b‖ 2
2 = ‖Ay −Ax‖ 2

2 + ‖Ax− b‖ 2
2 ≥ ‖Ax− b‖ 2

2

for all y ∈ Cn. Thus x minimises g.
Now assume that the vector x minimises g. Then for every y ∈ Cn we have

0 =
∂

∂λ
g(x+ λy) =

1
2

(
〈Ay,Ax− b〉+ 〈Ax− b, Ay〉

)
= Re〈Ax− b, Ay〉

and

0 =
∂

∂λ
g(x+ λiy) =

1
2

(
−i〈Ay,Ax− b〉+ i〈Ax− b, Ay〉

)
= − Im〈Ax− b, Ay〉.

This shows 〈Ax− b, Ay〉 = 0 and thus Ax− b ⊥ Ay for all y ∈ Cn.

Corollary 7.2. A vector x ∈ Cn solves (LSQ) if and only if

A∗Ax = A∗b. (7.1)

Proof. From the theorem we know that x solves (LSQ) if and only if Ax − b ⊥ range(A). This
in turn is equivalent to Ax− b ⊥ ai for every column ai of A, i.e. to A

∗(Ax− b) = 0.

It is hence of interest to know whether A∗A is invertible. We assume throughout the remain-
der of this chapter that the singular values of A satisfy

σ1 ≥ σ2 ≥ · · · ≥ σn > 0

and in this case A∗A is indeed invertible. Under this assumption, (LSQ) is solved by

x = A†b

where the pseudo-inverse A† = (A∗A)−1A∗ is de�ned in De�nition 3.6. The system (7.1) is
called the normal equations for (LSQ).

Recall the de�nition of the 2-norm condition number for (LSQ) from Chapter 3. Note that
this is large when A is close to being rank-de�cient, so that σn is small. In many practical
applications of (LSQ), such as arise naturally in statistics, A is indeed close to being rank-
de�cient. We will comment on this issue when we discuss the stability of the algorithms.
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7.1 LSQ via Normal Equations

The Method

A natural approach to solution of the normal equations is as follows:

Algorithm (LSQ via normal equations).
input: A ∈ Cm×n with m ≥ n and rank(A) = n, b ∈ Cm
output: x ∈ Cn with minimal ‖Ax− b‖2
1: calculate A∗A and A∗b
2: solve (A∗A)x = A∗b

Computational Complexity

The method is usually implemented via standard algorithms for the matrix-matrix multiplica-
tion and matrix-vector multiplication, together with Cholesky factorisation for solution of the
symmetric linear system.

Theorem 7.3 (Cost of Normal Equations for LSQ). The cost of solving (LSQ) by the Normal
Equations approach is, in the usual implementation described above,

C(m,n) ∼ mn2 +
1
3
n3

as m,n→∞.

Proof. Calculating A∗A and A∗b requires asymptotically ∼ 2mn2 operations for m,n → ∞.
Since A∗A is symmetric we only need to calculate half of the entries, which can be done in
∼ mn2 operations. Calculation of A∗b costs Θ(mn). Solving (A∗A)x = A∗b with Cholesky-
factorisation requires ∼ 1

3n
3 operations. Combining these terms gives the result.

Of particular interest is the case m ∼ an as n → ∞ for some constant a � 1, which arises
frequently in practice. If a� 1 the cost is dominated by mn2.

Error Analysis

One way that the error analysis proceeds is by proving that the computed x, x̂, solves

(A∗A+ ∆A)x̂ = A∗b+ c

and then using the backward error analysis for (SLE). Because κ(A∗A) = κ(A)2 in the 2-norm
it follows that

‖∆x‖2
‖x‖2

= O
(
κ(A)2εm

)
.

In practice this method can perform very badly when the matrix A is close to being rank-de�cient
(so that σn is small by Lemma 3.8) and the 2-norm condition number of A is large.

7.2 LSQ via QR factorisation

The Method

To increase stability, at an increase in computational cost, the following QR based algorithm is
often used in practice.

Algorithm (LSQ via QR factorisation).
input: A ∈ Cm×n with m ≥ n and rank(A) = n, b ∈ Cm
output: x ∈ Cn with minimal ‖Ax− b‖2
1: compute the reduced QR factorisation A = Q̂R̂
2: compute Q̂∗b ∈ Cn
3: solve R̂x = Q̂∗b using back substitution
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The result of the algorithm satis�es

A∗Ax = A∗Q̂R̂x

= A∗Q̂Q̂∗b

= R̂∗Q̂∗Q̂Q̂∗b

= R̂∗Q̂∗b

= A∗b

and thus solves (LSQ).

Computational Complexity

The method is usually implemented by means of Householder based QR factorisation, standard
matrix-vector multiplication for Q̂∗b and standard triangular inversion of R. As for the normal
equations approach, we assume that there is positive a, independent of n, such that m ∼ an as
n→∞.

Theorem 7.4 (Cost of QR for LSQ). Let sn(A) > 0. The cost of solving (LSQ) by the QR
approach is, in the usual implementation,

2mn2 − 2
3
n3 + Θ(mn+ n2).

Proof. Steps 1 and 2 together have asymptotic cost C1(m,n) ∼ 2mn2− 2
3n

3 +Θ(mn), and step 3
has asymptotic cost C2(m,n) = Θ(n2). Thus we get the desired result.

If a� 1 then the cost is dominated by 2mn2 and is roughly twice that of the normal equations
approach.

Error Analysis

The Householder QR approach has considerably improved backward stability properties when
compared with the normal equations based solution method. In particular, the backward error
is small in the following sense.

Theorem 7.5. Let x solve the (LSQ) problem for (A, b) and let x̂ be the computer solution via
Householder QR factorisation. Then x̂ minimises ‖(A+ ∆A)x̂− (b+ ∆b)‖2 for matrix ∆A with
columns ∆aj and vector ∆b satisfying, for εm su�ciently small,

‖∆aj‖2 ≤
Cmnεm

1− Cmnεm
‖aj‖2, j = 1, . . . , n

‖∆b‖2 ≤
Cmnεm

1− Cmnεm
‖b‖2.

In contrast to the normal equations method, this bound on the backward error is independent
of the condition number of A. However, practitioners are often interested in the implied error in
estimating the residual r = b−Ax. This can still behave poorly for the QR method, particularly
when the matrix A is ill-conditioned.

7.3 LSQ via SVD

The Method

The most stable solution of (LSQ), especially useful for problems where A is close to being
rank-de�cient, and σn close to zero, is SVD based.
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Algorithm (LSQ via SVD).
input: A ∈ Cm×n with m ≥ n and rank(A) = n, b ∈ Cm
output: x ∈ Cn with minimal ‖Ax− b‖2
1: compute the reduced SVD A = Û Σ̂V ∗

2: compute Û∗b ∈ Cn
3: solve Σ̂y = Û∗b
4: return x = V y

The result x of the calculation satis�es

A∗Ax = A∗Û Σ̂V ∗V y = A∗Û Û∗b = A∗b

and thus it is the solution of (LSQ).

Computing the SVD

Assume that we are given A ∈ Cm×n. A common approach to computing the SVD is as follows:

• Step 1. Find the reduced QR factorisation A = Q̂R̂ with Q̂ ∈ Cm×n and R̂ ∈ Cn×n.

• Step 2. Perform a bidiagonalisation of R, via orthogonal transformations as in Lemma 4.11,
so that B = U∗1RV1 where B ∈ Cn×n is upper-bidiagonal: has non-zeros only on the
diagonal and on the �rst upper o�-diagonal.

• Step 3. Find an SVD B = U2ΣV ∗2 by use of Theorem 2.17.

• Step 4. Note that A = (QU1U2)Σ(V1V2)∗ and that hence A = UΣV ∗ with orthogonal U, V
given by U = QU1U2, V = V1V2. (Note that the composition of orthogonal matrices is
itself orthogonal).

It may be shown that the cost of this algorithm is 2mn2 + 11n3 + Θ(mn+ n2).

Computational Complexity

Using these ideas is the basis for the standard implementation of SVD based approaches to
(LSQ). As for the normal equations approach, we assume that there is a positive a, independent
of n, such that m ∼ an as n→∞.

Theorem 7.6 (Cost of SVD for LSQ). Let sn(A) > 0. The cost of solving (LSQ) by the SVD
approach is, in the usual implementation,

2mn2 + 11n3 + Θ(mn+ n2).

Proof. (Sketch) SVD is 2mn2 + 11n3 + Θ(mn+ n2).

form c = Û∗b : Θ(mn)

solve Σ̂w = c : Θ(n)

form x = V y : Θ(n2).

If a � 1 the cost is similar to that of of the QR based method. But, for moderate values
of a, the additional 11n3 term means that this method can be considerably more time-consuming
than the QR method.

Error Analysis

The SVD approach is by far the most stable of the three methods for (LSQ). This is because
it reveals the singular values which are close to zero, and hence possibly re�ect rank-de�ciency
of A. Exploiting this fact, enables the method to perform well even in situations which are close
to rank-de�cient and, in particular, where σn is very close to zero.
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Exercises

Exercise 7-1. The purpose of this question is to introduce you to the content of this chapter.
It is broken into three parts: (i) formulate a least squares problem; (ii) solve it blindly using
Matlab; (iii) introduce the SVD, a major tool used in solving least squares problems.
(i) Let {(u(i), v(i))}mi=1 be a set of points in the (u, v) plane. We wish to �nd the �best� straight
line �t

v = αu+ β

to this data. The least squares approach to this problem is to �nd (α, β) ∈ R2 minimising

G(α, β) =
m∑
i=1

|αu(i) + β − v(i)|2.

Show that G may be written as
G(α, β) = ‖Ay − b‖22

for y = (α, β)T and some choice of A ∈ Rm×2 and b ∈ Rm which you should specify.
(ii) Generate some data {(u(i), v(i))}100

i=1 in the following way: specify some delta ∈ R and type

>> u=rand(100,1);

>> v=2*u+ones(100,1)+delta*rand(100,1);

Construct A and b as de�ned in (i) and then form

>> x=A\b

This is the least squares solution. What would you expect the solution to be if delta is very
small? Test your hypothesis by repeating the previous construction of A and b for a variety of
small delta.
(iii) As we shall see, there are several competing methods to solve a least squares problem. One
is based on the QR decomposition. A second is based on the SVD (singular value decomposi-
tion). To make the matrices shorter type A=A(1:5,:). We will perform operations on this new
shortened version of A (corresponding to 5 data points rather than 100.) Type

>> [U,X,V]=svd(A)

and discuss the properties of U , X and V (think about columns!). Now type

>> rn=norm(U*X*V'-A)

What does this tell you? Now type

>> [W,S,Z]=svd(A,0)

and compare W,S and Z with U,X and V . Again type

>> rn=norm(W*S*Z'-A)

What does this tell you?
The two factorisations are known (respectively) as the full SVD and the reduced SVD In our

theoretical development we will mainly use the reduced SVD, and will refer to this as the SVD
for short.
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Exercise 7-2. You are given m data points (u(i), v(i)) where u(i) ∈ Rn−1 and v(i) ∈ R for
i = 1, . . . ,m. We would like to �nd α ∈ Rn−1 and β ∈ R to minimise

m∑
i=1

|αTu(i) + β − v(i)|2.

Show that this problem may be reformulated as a standard least squares problem by specifying
appropriate choices of A ∈ Rm×n and b ∈ Rm.

Now let n = 2 and generate m = 50 random data points of the form

v(i) = u(i) + 10−2W (i)

where the u(i) are chosen at random uniformly from [0, 100] and the W (i) are chosen at random
from the standard normal distribution (with mean zero and variance one). Solve the resulting
least squares problem by the QR method and by using the SVD (make use of Matlab's qr and
svd routines). What do you expect the answer to be? Compare the e�ciency and accuracy of
the two di�erent methods.

Exercise 7-3. Vandermonde matrices again: remember the command vander in Matlab.
a) Consider the polynomial interpolation problem. For each of the cases l = 2, 4, 6, 8, 10,

generate a square Vandermonde matrix B(l) with the data points {uj}lj=1 chosen from the set

{1, 2, . . . , l}. Estimate the condition numbers of the B(l) with the Matlab routine cond, and plot
it as a function of l. What do you deduce from this exercise?

b) Now consider the problem of polynomial data �tting. Write down a least squares problem
Bα = v which determines the coe�cients {αj}nj=1 in a polynomial

v(x) =
n∑
j=1

αju
j

which best �ts the data points {(uj , vj)}nj=1 in the sense of minimising

m∑
i=1

|v(ui)− vi|2.

The matrix B is a rectangular Vandermonde matrix. For each of the cases l = 2, 4, 6, 8, 10,
generate the rectangular B(l) with m = l and n = l/2. Choose the data points {uj}lj=1 from the

set {1, 2, . . . , l}. Estimate the condition numbers of the B(l) with the Matlab routine cond, and
plot it as a function of l. Discuss what you observe in relation to the �rst part of the question.

c) Now consider the data points

uj = j, j = 1, . . . , 9
u10 = 9.0000001

vj = 1 + uj + u4
j + 10−2W (j)

where the W (j) are independently chosen at random from the standard normal distribution
(mean zero and variance one). Find the tenth degree polynomial interpolant to this data set,
using QR factorisation. Then �nd the best �t polynomial of degree four, using QR to solve the
resulting least squares problem. Compare the results you obtain from interpolation and best �t.
Use graphical output to illustrate your discussion.

Exercise 7-4. Let A ∈ Rn×n be symmetric positive de�nite with eigenvalues

0 < µ1 ≤ µ2 ≤ . . . ≤ µn.

1. Show that
‖A‖2 = µn and ‖A−1‖2 = µ−1

1 .

What is the condition number of A in the Euclidean norm in this case?
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2. Explicitly �nd δA solving

min
{
‖δA‖2
‖A‖2

: A+ δA is singular

}
.

How big is ‖δA‖2/‖A‖2 for this δA?

3. Let B ∈ Rm×n with m > n. State and derive the normal equations for the solution of the
least squares problem

min
x∈Rn

‖Bx− b‖2

where b ∈ Rm.

4. If B has singular values {σi}ni=1 then what is the Euclidean norm condition number of the
matrix which must be inverted to solve the normal equations?

Exercise 7-5. Show that the least squares solution will yield Ax = b if and only if b = AA†b
where A† is the Moore-Penrose inverse of A.
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Chapter 8

Eigenvalue Problems

In this chapter we will study methods for solution of the eigenvalue problem (EVP): given
A ∈ Cn×n, compute the eigenvalues and eigenvectors of A.

A �rst insight is that �nding eigenvalues and �nding eigenvectors are equivalent problems.
To �nd an eigenvalue from an eigenvector we proceed as follows: Given an eigenvector x ∈ Cn we
try to �nd the α ∈ C which minimises ‖αx−Ax‖2. Since x is an eigenvector, the minimum of 0
is attained for the corresponding eigenvalue. It is easy to check, for example using Corollary 7.2,
that the optimal choice of α is

α = (x∗x)−1x∗(Ax) =
〈x,Ax〉
〈x, x〉

.

Note that solvability of the normal equations in this case is guaranteed, provided that x 6= 0. The
preceding considerations show that the following de�nition provides a natural way to estimate
an eigenvalue from an estimate of an eigenvector.

De�nition 8.1. The Rayleigh quotient of a matrix A ∈ Cn×n is de�ned by

rA(x) =
〈x,Ax〉
〈x, x〉

for all x ∈ Cn.

Using this notation, we get that
Ax = rA(x)x

for all eigenvectors x of A.
Calculating an eigenvector x from an eigenvalue λ can be achieved by �xing one component

of the vector x, say xl, to be 1 and then solving n − 1 of the linear equations Ax = λx, with
λ and xl given. If the eigenvectors corresponding to λ have xl = 0 then this system of linear
equations will have no solution but, since x 6= 0, there will be an l ∈ {1, . . . , n} such that the
system can be solved and the solution will be an eigenvector with eigenvalue λ.

Theorem 1.12 shows that, if we can �nd the roots of arbitrary polynomials, we can also
�nd the eigenvalues of arbitrary matrices. In fact the two problems are equivalent: for every
polynomial we can �nd a matrix with this polynomial as the characteristic polynomial. To see
this let p(z) = (−1)n(c0 + c1z + · · · + cn−1z

n−1 + zn) be given. De�ne the companion matrix
C ∈ Cn×n of the polynomial p by

C =



0 −c0
1 −c1

. . .
...

. . . −cn−2

1 −cn−1

 . (8.1)
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One can show that ρC(z) = det(C − zI) = p(z) (see Exercise 8-8). Hence �nding eigenvalues
of C is equivalent to the problem of �nding the roots of the polynomial p. This establishes
equivalence between the eigenvalue problem and root �nding for polynomials. Regarding this
latter problem we know the following:

Theorem 8.2 (Abel, 1824). For every n ≥ 5 there is a polynomial p of degree n with ratio-
nal coe�cients that has a real root which cannot be expressed by only using rational numbers,
addition, subtraction, multiplication, division and taking kth roots.

Any possible algorithm will be based on the operations mentioned in the theorem and hence
it is not possible to �nd an algorithm which calculates eigenvalues exactly after a �nite number
of steps. The conclusion to be drawn from this is that any eigenvalue solver must be iterative:
aiming to approximate the solution of the eigenvalue problem in a �nite number of steps. We
describe a variety of iterative methods for (EVP) in the following sections.

In the remainder of this chapter we will consider the Hermitian eigenvalue problem. As we
have seen, if A ∈ Cn×n is Hermitian, the matrix has an orthonormal system of eigenvectors and
the corresponding eigenvalues are real. In this chapter x1, . . . , xn ∈ Cn will always denote an or-
thonormal system of eigenvectors of A and λ1, . . . , λn ∈ R will be the corresponding eigenvalues.
We order the eigenvalues such that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn| ≥ 0.

Since our methods will be iterative, the algorithms will only compute approximate eigenvec-
tors and eigenvalues. The following theorem shows, that the Rayleigh quotient of an approximate
eigenvector is a good approximation for the corresponding eigenvalue.

Theorem 8.3. Let A ∈ Cn×n be Hermitian and x ∈ Rn\{0}.
a) x is an eigenvector of A with eigenvalue λ if and only if ∇rA(x) = 0 and rA(x) = λ.
b) If x is an eigenvector of A, then∣∣rA(x)− rA(y)

∣∣ = O
(
‖x− y‖22

)
as y → x.

Proof. a) The gradient of rA is

∇rA(x) =
2
‖x‖2

(
Ax− rA(x) · x

)
.

Assume Ax = λx. Then rA(x) = 〈x, λx〉/〈x, x〉 = λ and

∇rA(x) =
2
‖x‖ 2

2

(
λx− λx

)
= 0.

Note that ∇rA(x)→∞ as x→ 0. Thus, if ∇rA(x) = 0, then Ax− rA(x)x = 0 and x 6= 0 so
that (x, rA(x)) is an eigenpair for A.

b) From part a) we know ∇rA(x) = 0. Taylor expansion of rA around x gives

rA(y) = rA(x) + 〈∇rA(x), y − x〉+O
(
‖y − x‖ 2

2

)
= rA(x) +O

(
‖y − x‖ 2

2

)
.

Many of the methods for �nding eigenvalues rely on repeated matrix-vector multiplication
by A. Thus they will be considerably cheaper if A is preprocessed so that it has as many zeros as
possible, but is similar to the original matrix. This can be achieved by reducing A to Hessenberg
form using Lemma 4.12. When A is Hermitian, the Hessenberg form is necessarily tridiagonal.
Hence tridiagonal matrices play an important role in what follows.
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8.1 The Power Method

The Method

The key idea of the power method is that, assuming some minor technical conditions, repeated
application of A to an arbitrary starting vector will lead to a sequence of vectors which eventually
align with the eigenvector associated with the largest eigenvalue.

Algorithm PI (power iteration).
input: A ∈ Cn×n Hermitian
output: z(k) ∈ Cn, λ(k) ∈ R with z(k) ≈ x1 and λ(k) ≈ λ1

1: choose z(0) ∈ Rn with ‖z(0)‖2 = 1
2: for k = 1, 2, 3, . . . do
3: w(k) = Az(k−1)

4: z(k) =
w(k)

‖w(k)‖2
5: end for
6: λ(k) = rA(z(k))

Remarks.

1. As with all iterative methods, the method must be stopped at some point where the result
is �close enough� to the real one.

2. The algorithm calculates an approximate eigenvector as z(k) = Akz(0)/‖Akz(0)‖2. To avoid
over�ow/under�ow errors the vector z(k) is normalised in every step of the iteration.

3. The method is based on the following idea: if we express z(0) in the basis x1, . . . , xn we
get

z(0) =
n∑
i=1

αixi

and

Akz(0) =
n∑
i=1

αiA
kxi =

n∑
i=1

αiλ
k
i xi.

For large k this expression is dominated by the term corresponding to the eigenvalue with
the largest modulus.

Error Analysis

Since eigenvectors are only determined up to scalar factors, we cannot expect the approxima-
tion z(k) to be close to the vector x1 we chose. Instead, we would expect z(k) to be close to σx1

where σ is a factor which might depend on k. We get the following result.

Theorem 8.4. Let |λ1| > |λ2| ≥ · · · ≥ |λn| and 〈x1, z
(0)〉 6= 0. Then there is a sequence

(σ(k))k∈N in C with |σ(k)| = 1 for all k ∈ N such that the sequences (z(k)) and (λ(k)) from the
power iteration algorithm satisfy ∥∥z(k) − σ(k)x1

∥∥
2

= O
(∣∣λ2

λ1

∣∣k) (8.2)

and ∣∣λ(k) − λ1

∣∣ = O
(∣∣λ2

λ1

∣∣2k) (8.3)

as k →∞.
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Proof. a) We can write z(0) as

z(0) =
n∑
i=1

αixi, αi = 〈xi, z(0)〉.

Since α1 = 〈x1, z
(0)〉 6= 0, we get

Akz(0) =
n∑
i=1

αiλ
k
i xi = α1λ

k
1

(
x1 +

n∑
i=2

αi
α1

( λi
λ1

)k
xi

)
and Pythagoras' Theorem gives∥∥Akz(0)

∥∥ 2

2
= |α1λ

k
1 |2
(

1 +
n∑
i=2

∣∣αi
α1

∣∣2∣∣ λi
λ1

∣∣2k) = |α1λ
k
1 |2(1 + γk)

where

γk =
n∑
i=2

∣∣αi
α1

∣∣2∣∣ λi
λ1

∣∣2k ≤ ‖z(0)‖22
|α1|2

∣∣λ2

λ1

∣∣2k.
Thus we can conclude

z(k) =
Akz(0)

‖Akz(0)‖2
=

α1λ
k
1

|α1λk1 |

(
x1 +

n∑
i=2

αi
α1

( λi
λ1

)k
xi

) 1√
1 + γk

.

Now de�ne σ(k) = α1λ
k
1/|α1λ

k
1 |. Then∥∥∥Akz(0)

|α1λk1 |
− σ(k)x1

∥∥∥ 2

2
=
∥∥∥Akz(0)

α1λk1
− x1

∥∥∥ 2

2
=

n∑
i=2

(αi
α1

)2( λi
λ1

)2k = γk

and thus ∥∥∥z(k) − σ(k)x1

∥∥∥
2
≤
∥∥∥ Akz(0)

‖Akz(0)‖2
− Akz(0)

|α1λk1 |

∥∥∥
2

+
∥∥∥Akz(0)

|α1λk1 |
− σ(k)x1

∥∥∥
2

=
√

1 + γk − 1 +
√
γk

≤ 2
√
γk

≤ 2
‖z(0)‖2
|α1|

∣∣λ2

λ1

∣∣k.
This completes the proof of (8.2).

b) Using part b) of Theorem 8.3 and (8.2) we get∣∣λ(k) − λ1

∣∣ =
∣∣rA(z(k))− rA(σ(k)x1)

∣∣ = O
(
‖z(k) − σ(k)x1‖ 2

2

)
= O

(∣∣λ2

λ1

∣∣2k).
This completes the proof of (8.3).

Computational Complexity

For simplicity assume that our primary interest is in the accuracy of eigenvectors. We wish to
iterate until

‖z(k) − σ(k)x1‖2 ≤ ε. (8.4)

Inspection of the preceding proof shows that this inequality will be attained provided

2
(‖z(0)‖2

α1

)∣∣λ2

λ1

∣∣k ≤ ε. (8.5)

Hence it su�ces to choose k to be the smallest integer greater than

k# =
ln ε−1 + ln ‖z(0)‖2 + ln 2− lnα1

ln(λ1/λ2)
.
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Assumption 8.5. The �rst and second eigenvalues of A satisfy λ1
λ2

= 1 + Θ(n−β).

Theorem 8.6. Under Assumption 8.5 and the assumptions of Theorem 8.4, the computational

cost of using the power method to achieve (8.4) is bounded above by c
(
n1+β ln ε−1 + n3

)
, for

some constant c independent of n and ε.

Proof. Because of ‖z(0)‖2 = 1, the quantities ‖z(0)‖ and α1 are independent of n. The cost
of reducing A to Hessenberg (tridiagonal) form is Θ(n3) (see Lemma 4.12). Each step of the
iteration then costs Θ(n), since matrix vector-multiplication and inner-products are both Θ(n)
when the matrix tridiagonal. Combining the second and third items gives a bound of Θ(nβ ln ε−1)
for the number of iterations. Using (8.5) gives the desired result for the largest eigenvalue and
corresponding eigenvector of the tridiagonal matrix. Transforming back to the original matrix
A costs Θ(n2) and is hence negligible relative to the cost of transforming to Hessenberg form.
The transformation is an orthogonal one and hence does not change the 2-norm of the error in
the eigenvector.

8.2 Inverse Iteration

The Method

The power iteration algorithm helps to �nd the eigenvalue with the largest modulus and the cor-
responding eigenvector. The following simple idea leads to a modi�cation of the power iteration
method to �nd di�erent eigenvalues of A.

Given λ ∈ R, the matrix (A − λI)−1 has eigenvalues µi = 1/(λi − λ) for i = 1, . . . , n.
The power iteration method applied to this matrix will thus return an approximation for the
eigenvector corresponding to the µj with the biggest modulus. This is the µj where λj is the
eigenvalue closest to λ. The resulting algorithm is called the inverse iteration method.

Algorithm II (inverse iteration).
input: A ∈ Cn×n Hermitian, λ ∈ R
output: z(k) ∈ Cn, λ(k) ∈ R with z(k) ≈ xj and λ(k) ≈ λj

where λj is the eigenvalue closest to λ

1: choose z(0) ∈ Rn with ‖z(0)‖2 = 1
2: for k = 1, 2, 3, . . . do
3: solve (A− λI)w(k) = z(k−1)

4: z(k) =
w(k)

‖w(k)‖2
5: end for
6: return λ(k) = rA(z(k)).

Remark. For practical usage the method is stopped at some point where the result is �close
enough� to the real one.

Error Analysis

The following convergence result is a direct consequence of Theorem 8.4.

Theorem 8.7 (Convergence of Inverse Iteration). Let A ∈ Cn×n be Hermitian and λ ∈ R.
Suppose a, b ∈ {1, . . . , n} are such that |λa−λ| < |λb−λ| ≤ |λj−λ| for all j ∈ {1, . . . , n}\{a, b}.
Then, if 〈z(0), xa〉 6= 0, there exists a sequence (σ(k))k∈N with |σ(k)| = 1 such that

‖z(k) − σ(k)xa‖22 + |λ(k) − λa| = O

(∣∣∣∣λ− λaλ− λb

∣∣∣∣2k
)
.
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Computational Complexity

The computational cost is analogous to that of the power iteration, under appropriate assump-
tions, found by translating the theorem for the power method, where we iterate A, to the inverse
iteration situation where we iterate (A − λI)−1. Because, after preprocessing, A is tridiagonal
the cost of each step of inverse iteration is the same as for the power method.

8.3 Rayleigh Quotient Iteration

The Method

For inverse iteration it is necessary to estimate the eigenvalue in advance. An alternative is to
estimate the eigenvalue during the course of the algorithm:

Algorithm RQI (Rayleigh quotient iteration).
input: A ∈ Cn×n symmetric
output: z(k) ∈ Rn, λ(k) ∈ R with z(k) ≈ xj and λ(k) ≈ λj for some j ∈ {1, · · · , n}
1: choose z(0) such that ‖z(0)‖2 = 1, λ(0) ∈ R
2: for k = 1, 2, . . . do
3: [A− λ(k−1)I]w(k) = z(k−1)

4: z(k) = w(k)/‖w(k)‖2

5: λ(k) =
〈z(k−1), w(k)〉+ λ(k−1)‖w(k)‖22

‖w(k)‖22
6: end for

Notice that λ(k) in step 5 is simply rA(w(k)), computed without application of A.

Error Analysis

The previous two algorithms both converged linearly: asymptotically, the error decreases by a
constant factor at each step. In contrast, when the Rayleigh quotient iteration converges to an
eigenvalue, say λj , it does so cubically:

|λ(k+1) − λj | = O(|λ(k) − λj |3).

A similar cubic rate of convergence is also obtained for the eigenvector. Such methods can hence
be very e�cient.

Computational Complexity

However, with iterations of this type, where the convergence is not linear (as with the New-
ton method for example), it is di�cult to predict when it will converge, and to which eigen-
value/eigenvector pair it will converge. Much of the computational complexity of such algorithms
stems from choosing starting points which will lead to convergence to the desired pair.

8.4 Simultaneous Iteration

The Method

Now imagine that we wish to calculate all the eigenvectors. A natural idea is to take

z(0) ∈ Rn×n

orthonormal, and generate
Z(k+1) = AZ(k).
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Then each column of Z(k), z
(k)
i , is calculated as

z
(k+1)
i = Az

(k)
i .

Let

z
(0)
i =

n∑
j=1

αj,ixj

and assume that
αi,i = 〈z(0)

i , xi〉 6= 0, i = 1, . . . , n (8.6)

Now

z
(k)
i =

n∑
j=1

αj,iλ
k
jxj .

If
|λ1| > |λ2| > · · · > |λn−1| > |λn| (8.7)

then

span{z(k)
1 } = span{y1}, ‖y1‖2 = 1, y1 = x1 + e1

span{z(k)
1 , z

(k)
2 } = span{y1, y2}, ‖y2‖2 = 1, y2 = x2 + e2

...

span{z(k)
1 , z

(k)
2 , . . . , z(k)

n } = span{y1, y2, . . . , yn}, ‖yn‖2 = 1, yn = xn + en,

where

ej =
min{j,n−1}∑

l=1

O

(∣∣∣∣λl+1

λl

∣∣∣∣k
)

= O(ξ)

for

ξ := max
1≤l≤n−1

λl+1

λl
.

However, in practice this is a poor algorithm, not only because of over�ow / under�ow if

|λ1| 6= 1, but also because the approximate basis {z(k)
1 , z

(k)
2 , . . . , z

(k)
n } for {x1, . . . , xn} is highly

ill-conditioned, here meaning that the vectors nearly all point in the same direction, x1.
To overcome these problems the algorithm used in practice forms an orthonormal basis from

the approximate basis for {x1, . . . , xn}, by means of QR.

Algorithm (simultaneous iteration).
input: A ∈ Rn×n symmetric

output: Z(k),Λ(k) ∈ Rn×n with Z(k) ≈ (x1, x2, . . . , xn) and Λ(k)
ii ≈ λi for i = 1, . . . , n

1: choose an orthogonal matrix Z(0) ∈ Rn×n
2: for k = 1, 2, 3, . . . do
3: W (k) = AZ(k−1)

4: calculate the QR factorisation W (k) = Z(k)R(k)

5: Λ(k) = (Z(k−1))TW (k)

6: end for

Here Z(k)R(k) is the QR factorisation of W (k). In the following we write Z(k) and W (k) in
terms of columns:

Z(k) = (z(k)
1 , . . . , z(k)

n ), W (k) = (w(k)
1 , . . . , w(k)

n ).

We show below that the diagonal entries of Λ(k) are rA(z(k−1)
i ).
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Error Analysis

Theorem 8.8 (Convergence of Simultaneous Iteration). Let A ∈ Rn×n be symmetric, satisfying

(8.7) so that ξ < 1. Under assumption (8.6) there are, for j = 1, . . . , n, sequences {s(k)
j }k∈Z+ ,

s
(k)
j ∈ {−1,+1}, such that

‖z(k)
j − s(k)

j xj‖22 + |Λ(k)
jj − λj | = O(|ξ|2k).

Proof. By the discussion preceding the algorithm the result follows for the approximate eigen-
vectors. Since

Λ(k)
jj = 〈z(k−1)

j , w
(k)
j 〉 = 〈z(k−1)

j , Az
(k−1)
j 〉

= rA(z(k−1)
j ),

the convergence to the eigenvalues follows by Theorem 8.3.

Computational Complexity

In practice the simultaneous iteration is usually implemented in the form known as the QR
algorithm, which we discuss in the next section. Hence we discuss complexity in that context.

8.5 The QR Algorithm for Eigenvalues

The Method

In practice the eigenvalues of A can be found directly by a method related to simultaneous
iteration, and which we now derive. The resulting algorithm appears almost magical upon �rst
sight, but when related to simultaneous iteration, its mechanism is clear. To establish this
relation let Z(k−1), Z(k), R(k), W (k) and Λ(k) be as in the simultaneous iteration algorithm and
de�ne

Q(k) := (Z(k−1))TZ(k).

This is an orthogonal matrix by construction.
Recall that

Λ(k) = (Z(k−1))TAZ(k−1).

Thus

Q(k)R(k) = (Z(k−1))TZ(k)(Z(k))TW (k)

= (Z(k−1))TAZ(k−1)

= Λ(k).

Furthermore

R(k)Q(k) = (Z(k))TW (k)(Z(k−1))TZ(k)

= (Z(k))TAZ(k)

= Λ(k+1).

Thus reversing the order of Q and R results in an improved estimate of the eigenvalues. This
suggests the following algorithm for locating eigenvalues of A.

QR for eigenvalues input: A ∈ Rn×n symmetric
output: Λ ∈ Rn×n with diagonal entries approximating the eigenvalues

1: Set Λ(0) = A
2: for k = 1, 2, . . . do
3: calculate the QR factorisation Λ(k−1) = Q(k−1)R(k−1)

4: Λ(k) = R(k−1)Q(k−1)

5: end for
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Error Analysis

Theorem 8.9 (Convergence of QR). Under the assumptions of Theorem 8.8, the QR eigenvalue
algorithm satis�es (possibly after reordering of eigenvalues)

‖Λ(k)
ii − λi‖2 = O

(
|ξ|2k

)
, ∀i = 1, · · · , n.

Proof. The algorithm produces the same Λ(k) as simultaneous iteration. So the diagonal be-
haviour follows from Theorem 8.8.

For the o�-diagonals, note that by orthogonality of the xl

Λ(k)
jl = 〈z(k)

j , Az
(k)
l 〉 = 〈xj , Axl〉+O(|ξ|k)

= 〈xj , λlxl〉+O(|ξ|k)

= λl〈xj , xl〉+O(|ξ|k)

= O(|ξ|k).

Thus the matrix Λ becomes diagonal as k →∞.

Computational Complexity

Making the error in the QR method of size ε gives the number of iterations k = O(
ln ε
ln ξ

). Under

the assumptions of Theorem 8.8, the QR algorithm as stated would cost

O
(

ln ε
ln ξ

n3

)
work to obtain estimates of all eigenvalues to within O(ε). However, this can be improved to

O
(

ln ε
ln ξ

n2

)
+O(n3),

with second term independent of ε, ξ as follows.
Recall from De�nition 1.8 that a matrix A ∈ Cn×n is upper Hessenberg if

aij = 0 i > j + 1.

Lemma 8.10. If Λ(0) is upper Hessenberg, the QR Algorithm generates Λ(k) which are upper
Hessenberg.

Proof. We have

Λ(k) = R(k−1)Q(k−1)

= R(k−1)Λ(k−1)(R(k−1))−1.

But R(k−1) and its inverse are upper triangular and pre- or post-multiplication by upper trian-
gular matrices preserves the upper Hessenberg form.

Theorem 8.11 (Cost of QR). Under the assumptions of Theorem 8.8 the QR algorithm can be
implemented to give eigenvalue approximations of size ε with cost

C(n, ε) ≤ k1
ln ε
ln ξ

n2 + k2n
3,

where k1, k2 are independent of n, ε and ξ.

Proof. (Sketch) First �nd T as in Lemma 4.12, at cost Θ(n3). Then apply the QR algorithm to
T . Since each QR factorisation is on an upper Hessenberg matrix, the cost reduces to Θ(n2).
The number of iterations required to reduce the error to size ε is bounded by O(ln ε/ ln ξ) and
the result follows.

101



8.6 Divide and Conquer for Symmetric Problems

We conclude the chapter with a somewhat di�erent method for eigenvalue calculation, speci�-
cally constructed for symmetric tridiagonal systems. It uses a divide and conquer approach, as
introduced for the Strassen algorithm.

The Method

If A ∈ Rn×n is symmetric then the reduction to upper Hessenberg form of Lemma 4.12 yields
tridiagonal T in Θ(n3) operations. Thus we consider �nding the eigenvalues of a symmetric
tridiagonal T . By expressing T in terms of two smaller tridiagonal matrices of half the size,
we create the basis for a divide and conquer approach for the symmetric eigenvalue problem.
Consider a tridiagonal T in the form:

T =



a1 b1

b1
. . .

. . .

. . .
. . . bn/2−1

bn/2−1 an/2 bn/2
bn/2 an/2+1 bn/2+1

bn/2+1

. . .
. . .

. . .
. . . bn−1

bn−1 an


.

The basis of the divide and conquer approach is to split T into two separate tridiagonal
matrices, each of whose eigenvalues and eigenvectors determine those of T . This can be done
exactly if b is zero, and the following splitting of T tries to build on this fact.

Let n = 2k, b = bn/2 and write

T =
(
T1 0
0 T2

)
+ b(v ⊗ v), (8.8)

where v = (eTn/2|e
T
1 )T , with e1, en/2 ∈ Rn/2, and T1, T2 tridiagonal. In fact,

(T1)ij = Tij provided (i, j) 6= (n/2, n/2)
(T1)n/2n/2 = Tn/2n/2 − b

(T2)ij = Ti+n/2,j+n/2 provided (i, j) 6= (1, 1)
(T2)11 = T1+n/2,1+n/2 − b.

How do we �nd the eigenvalues of T from those of T1 and T2? Since T1, T2 are real symmetric,

Ti = QiΛiQTi , i = 1, 2.

Let

D =
(

Λ1 0
0 Λ2

)
= diag(d1, . . . , dn)

u =
(
QT1 0
0 QT2

)
v =

(
last column of QT1
�rst column of QT2

)
.

De�nition 8.12. Let f : R→ R be de�ned by

f(λ) := 1 + b〈u, (D − λI)−1u〉.

The equation f(λ) = 0 is called the secular equation.

The following theorem shows how the eigenvalues of T can be calculated from those of T1

and T2.
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Theorem 8.13. Assume that the {di} are distinct and that ui 6= 0 for all i. Then the eigenvalues
of T are the real roots of the secular equation.

Proof.

T =
(
Q1Λ1Q

T
1 0

0 Q2Λ2Q
T
2

)
+ bv ⊗ v

=
(
Q1 0
0 Q2

)((
Λ1 0
0 Λ2

)
+ bu⊗ u

)(
QT1 0
0 QT2

)
.

Thus T has the same eigenvalues as D + bu⊗ u by similarity.
Now,

det(D + bu⊗ u− λI) = det((D − λI)(I + b(D − λI)−1u⊗ u)).

If
det(D + bu⊗ u− λI) = 0

and λ is not an eigenvalue of D then

det(I + b(D − λI)−1u⊗ u) = 0.

Now det(I + x⊗ y) = 1 + 〈y, x〉 (see Exercise 8-4) and so

1 + b〈u, (D − λI)−1u〉 = f(λ) = 0.

Recall that we assume the {di} are distinct and that ui 6= 0. Let d0 = −∞ and dn+1 = ∞.
Then

• if b < 0 then f(λ) has n roots λi ∈ (di, di+1), i = 0, . . . , n− 1;

• if b > 0 then f(λ) has n roots λi ∈ (di, di+1), i = 1, . . . , n.

This follows from the fact that

f(λ) = 1 + b

n∑
i=1

u2
i

(di − λ)
.

Hence all the eigenvalues are accounted for and it follows that the assumption that λ cannot be
an eigenvalue of D holds.

Theorem 8.13 is the basis of a divide and conquer algorithm for the eigenvalue problem.

Error Analysis

The primary source of error, in real arithmetic, arises from solution of the secular equation.
However, because the roots which we seek are real, and because they lie in known intervals,
root-�nding methods with great accuracy and e�ciency can be applied (a simple example being
bisection). In practice the errors arising from this step of the algorithm are negligible compared
with those arising from �nite precision arithmetic.

Computational Complexity

Let Lk = C(2k), where C(n) is the cost of �nding eigenvalues and eigenvectors of symmetric
tridiagonal matrices in Rn×n. If we use a recursive algorithm, then the cost Lk needs to be
expressed in terms of the cost Lk−1 of �nding the eigenvalues and eigenvectors of symmetric
tridiagonal matrices in Rn/2×n/2.

Finding the eigenvalues and eigenvectors in Rn×n has cost Lk where

Lk = 2Lk−1 +mk,

where mk is the cost of constructing, and solving, the secular equation for T ∈ Rn×n. This cost
comprises:
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• �nding eigenvectors from these eigenvalues: this costs Θ(n) for each eigenvalue since the
matrix is tridiagonal, giving a total of Θ(n2);

• constructing u: Θ(n) to �nd last column of QT1 and �rst column of QT2 ;

• Solving the secular equation: Θ(n), assuming unit cost for each root using, for example,
bisection.

To state a theorem about the cost of this iteration we need the following de�nition.

De�nition 8.14. The decomposition (8.8) of a tridiagonal matrix T is non-degenerate if the
{di} are distinct and ui 6= 0 for all i.

Theorem 8.15 (Cost of Eigenvalue Divide and Conquer). Let T be symmetric, tridiagonal. If
all decompositions are non-degenerate at each level of recursion and if root �nding for the secular
equation is assigned unit cost, then the algorithm generates all eigenvalues and eigenvectors of
T at cost O(n2).

Proof. We have mk = Θ(n2) = Θ(4k). Thus, for some a > 0,

Lk ≤ 2Lk−1 + a4k.

Induction based on the assumption
Lk ≤ b4k

gives the desired result, provided b ≥ min{1, 2a}, since �nding the eigenvalues of a 1× 1 matrix
has unit cost.

Bibliography

The book [Par80] contains a very complete overview of the symmetric eigenvalue problem, the
subject that dominates this chapter. The book [TB97] has a good introduction to the subject.

Exercises

Exercise 8-1. The purpose of this question is to introduce you to ideas associated with eigen-
value problems and their solution in Matlab. The basic problem is, given A ∈ Rn×n, to �nd
x ∈ Cn and λ ∈ C such that

Ax = λx (8.9)

and, of course, x should be non-zero.
(i) What can you say about the eigenvalues λ if A is symmetric (just state, no proof). What
can you say about the eigenvectors?
(ii) Write down the de�nition of the characteristic polynomial satis�ed by the eigenvalues λ.
(iii) What is the polynomial in the case >> A=[3,2; 1,2] Hence �nd the eigenvalues and eigen-
vectors.
(iv) If

>> A=[3,2,1; 2,2,2; 1,2,1]

write the polynomial for λ in the form

p1λ
3 + p2λ

2 + p3λ+ p4 = 0

and �nd p = (p1, p2, p3, p4). In principle you can solve this cubic exactly so there is no need to
resort to numerical solution. (In general we obtain

n∑
i=0

λn−ipi+1 = 0.

What does Galois tell us about our need for applying numerical solutions to this problem?)
(v) One way to �nd the eigenvalues of A is to use the Matlab command roots. Type
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>> roots(p)

to �nd the roots of our cubic, and hence the eigenvalues of A. We can do this more generally.
Type

>> A=randn(20);

>> A=0.5*[A+A'];

>> p=poly(A)'

This creates a 20 × 20 matrix with normally distributed random entries, and then makes a
symmetric matrix from A. The vector p contains the co-e�cients in the characteristic polynomial
of A so that, if you type sort(roots(p)) you will get the eigenvalues of A (sort just orders the
roots). Do this.
(vi) Thus one way to �nd eigenvalues of A in Matlab is to form the characteristic polynomial
and �nds its roots. But Matlab does not do this as more e�cient methods are available. Type

>> sort(eig(A))

and you should get the same as you did in (v). But the method employed was very di�erent.
Here we show you the two key ideas used in eig. Set

>> A=[-1,2,3,0,4;2,1,6,2,2;3,6,3,3,0;0,2,3,8,2;4,2,0,2,-1]

and now type

>> [Q,H]=hess(A)

What properties do Q and H have? Type

>> rn=norm(Q*H*Q'-A)

What can you say about the relationship between the eigenvalues of H and those of A?
Now type

>> [W,D]=schur(H)

What properties do W and D have? Type

>> rn=norm(W*D*W'-H)

What can you say about the relationship between the eigenvalues of D and those of H?
Finally, what can you say about the relationship between the eigenvalues of A and the

diagonal elements of D? Test your hypothesis by typing eig(A) and comparing with D.

Exercise 8-2. Give a proof by induction which shows that the matrix A from (8.1) really has
determinant (−1)np(z) where p(z) = a0 + a1z + · · ·+ an−1z

n−1 + zn.

Exercise 8-3. Let B be a constant matrix and let T (t) solve the matrix di�erential equation

dT

dt
= BT − TB, T (0) = T0.

Assuming that the solution of this equation exists for all t ∈ R, show that T (t) has the same
eigenvalues as T0, for all t ∈ R. If B is skew-symmetric, show that ‖T (t)‖2 = ‖T0‖2 for all t ∈ R.

Exercise 8-4. Prove that det(I + xyT ) = 1 + yTx.

Exercise 8-5. Construct an example showing that the Jordan canonical form of a matrix can
be discontinuous with respect to small perturbations.
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Exercise 8-6. Newton's Method

1. Let G : Rm → Rm be di�erentiable. Newton's method for the solution of the equation
G(y) = 0 is to generate iterates yk according to

dG(yk)δyk = −G(yk), yk+1 = yk + δyk

where dG(y) is the Jacobian of G evaluated at y. Find the explicit formula for yk+1 in
terms of yk when m = 1. What is the order of convergence of the method?

2. The eigenvalue problem for A ∈ R can be regarded as a nonlinear system of equations for
y = y(x, λ) satisfying

Ax− λx = 0
1
2

(xTx− 1) = 0

Apply Newton's method to this system and show that it gives the iteration

λk+1 = λk +
1
2 (‖xk‖22 + 1)

xTk (A− λkI)−1xk

xk+1 = (λk+1 − λk)(A− λkI)−1xk.

If x0 = α0ϕ (α2
0 6= 1), Aϕ = µϕ (‖ϕ‖2 = 1) and λ0 6= µ, show that xk = αkϕ and �nd the

iteration governing the αk, i.e. �nd h : R→ R such that

αk+1 = h(αk).

Show that this iteration is Newton's method applied to a scalar equation and identify that
equation. Using this fact, prove that the full method on Rm is second order convergent for
this speci�c choice of initial data.

Exercise 8-7. Prove the following theorem concerning eigenvalues of tridiagonal matrices.

Theorem 8.16. Consider a matrix A of the form (5.5). Let the diagonal entries be real, constant
with equal o�-diagonal entries: ai = a, ci = a and di = d for all i = 1, . . . ,m where a and d are
real. Then the eigenvalues λk of the matrix are given by

λk = d+ 2a cos
(

kπ

m+ 1

)
,

for k = 1, . . . ,m. The corresponding eigenvector x = [x1, . . . , xm]T has jth component given by

xj = sin(kπj/(m+ 1)) (8.10)

Exercise 8-8. Consider the companion matrix C from (8.1). Prove that the eigenvalues λk
of C are the roots of the polynomial

m∑
j=0

αjλ
j = 0

where αm = 1. The corresponding eigenvector is

x = [x1, . . . , xm]T

where xj = λj−1
k .
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