details: | Andreas Voss, Jochen Voss and Veronika Lerche: Assessing Cognitive Processes with Diffusion Model Analyses: a Tutorial Based on fast-dm-30. Frontiers in Psychology, 2015. |
---|---|
online: | DOI:10.3389/fpsyg.2015.00336 |
metadata: | BibTeX, Google |
keywords: | fast-dm, diffusion model, parameter estimation, response time distribution |
Diffusion models can be used to infer cognitive processes involved in fast binary decision tasks. The model assumes that information is accumulated continuously until one of two thresholds is hit. In the analysis, response time distributions from numerous trials of the decision task are used to estimate a set of parameters mapping distinct cognitive processes. In recent years, diffusion model analyses have become more and more popular in different fields of psychology. This increased popularity is based on the recent development of several software solutions for the parameter estimation. Although these programs make the application of the model relatively easy, there is a shortage of knowledge about different steps of a state-of-the-art diffusion model study. In this paper, we give a concise tutorial on diffusion modeling, and we present fast-dm-30, a thoroughly revised and extended version of the fast-dm software (Voss and Voss, 2007) for diffusion model data analysis. The most important improvement of the fast-dm version is the possibility to choose between different optimization criteria (i.e., Maximum Likelihood, Chi-Square, and Kolmogorov-Smirnov), which differ in applicability for different data sets.
Copyright © 2015 Jochen Voss. All content on this website (including text, pictures, and any other original works), unless otherwise noted, is licensed under the CC BY-SA 4.0 license.